Chongqing Lei (Southeast University), Zhen Ling (Southeast University), Yue Zhang (Jinan University), Kai Dong (Southeast University), Kaizheng Liu (Southeast University), Junzhou Luo (Southeast University), Xinwen Fu (University of Massachusetts Lowell)

Android accessibility service was designed to assist individuals with disabilities in using Android devices. However, it has been exploited by attackers to steal user passwords due to design shortcomings. Google has implemented various countermeasures to make it difficult for these types of attacks to be successful on modern Android devices. In this paper, we present a new type of side channel attack called content queries (CONQUER) that can bypass these defenses. We discovered that Android does not prevent the content of passwords from being queried by the accessibility service, allowing malware with this service enabled to enumerate the combinations of content to brute force the password. While this attack seems simple to execute, there are several challenges that must be addressed in order to successfully launch it against real-world apps. These include the use of lazy query to differentiate targeted password strings, active query to determine the right timing for the attack, and timing- and state-based side channels to infer case-sensitive passwords. Our evaluation results demonstrate that the CONQUER attack is effective at stealing passwords, with an average one-time success rate of 64.91%. This attack also poses a threat to all Android versions from 4.1 to 12, and can be used against tens of thousands of apps. In addition, we analyzed the root cause of the CONQUER attack and discussed several countermeasures to mitigate the potential security risks it poses.

View More Papers

Browser Permission Mechanisms Demystified

Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Read More

Attacks as Defenses: Designing Robust Audio CAPTCHAs Using Attacks...

Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Read More

Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Read More

Position Paper: Space System Threat Models Must Account for...

Benjamin Cyr and Yan Long (University of Michigan), Takeshi Sugawara (The University of Electro-Communications), Kevin Fu (Northeastern University)

Read More