Hyun Bin Lee (University of Illinois at Urbana-Champaign), Tushar M. Jois (Johns Hopkins University), Christopher W. Fletcher (University of Illinois at Urbana-Champaign), Carl A. Gunter (University of Illinois at Urbana-Champaign)

Users can improve the security of remote communications by using Trusted Execution Environments (TEEs) to protect against direct introspection and tampering of sensitive data. This can even be done with applications coded in high-level languages with complex programming stacks such as R, Python, and Ruby. However, this creates a trade-off between programming convenience versus the risk of attacks using microarchitectural side channels.

In this paper, we argue that it is possible to address this problem for important applications by instrumenting a complex programming environment (like R) to produce a Data-Oblivious Transcript (DOT) that is explicitly designed to support computation that excludes side channels. Such a transcript is then evaluated on a Trusted Execution Environment (TEE) containing the sensitive data using a small trusted computing base called the Data-Oblivious Virtual Environment (DOVE).

To motivate the problem, we demonstrate a number of subtle side-channel vulnerabilities in the R language. We then provide an illustrative design and implementation of DOVE for R, creating the first side-channel resistant R programming stack. We demonstrate that the two-phase architecture provided by DOT generation and DOVE evaluation can provide practical support for complex programming languages with usable performance and high security assurances against side channels.

View More Papers

Oblivious DNS over HTTPS (ODoH): A Practical Privacy Enhancement...

Sudheesh Singanamalla*†, Suphanat Chunhapanya*, Jonathan Hoyland*, Marek Vavruša*, Tanya Verma*, Peter Wu*, Marwan Fayed*, Kurtis Heimerl†, Nick Sullivan*, Christopher Wood* (*Cloudflare Inc. †University of Washington)

Read More

QPEP: An Actionable Approach to Secure and Performant Broadband...

James Pavur (Oxford University), Martin Strohmeier (armasuisse), Vincent Lenders (armasuisse), Ivan Martinovic (Oxford University)

Read More

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping

Xiaoyu Cao (Duke University), Minghong Fang (The Ohio State University), Jia Liu (The Ohio State University), Neil Zhenqiang Gong (Duke University)

Read More

SquirRL: Automating Attack Analysis on Blockchain Incentive Mechanisms with...

Charlie Hou (CMU, IC3), Mingxun Zhou (Peking University), Yan Ji (Cornell Tech, IC3), Phil Daian (Cornell Tech, IC3), Florian Tramèr (Stanford University), Giulia Fanti (CMU, IC3), Ari Juels (Cornell Tech, IC3)

Read More