Hanna Kim (KAIST), Jian Cui (Indiana University Bloomington), Eugene Jang (S2W Inc.), Chanhee Lee (S2W Inc.), Yongjae Lee (S2W Inc.), Jin-Woo Chung (S2W Inc.), Seungwon Shin (KAIST)

As Non-Fungible Tokens (NFTs) continue to grow in popularity, NFT users have become targets of phishing scammers, called NFT drainers. Over the last year, $100 million worth of NFTs were stolen by drainers, and their presence remains a serious threat to the NFT trading space. However, no work has yet comprehensively investigated the behaviors of drainers in the NFT ecosystem.

In this paper, we present the first study on the trading behavior of NFT drainers and introduce the first dedicated NFT drainer detection system. We collect 127M NFT transaction data from the Ethereum blockchain and 1,135 drainer accounts from five sources for the year 2022. We find that drainers exhibit significantly different transactional and social contexts from those of regular users. With these insights, we design DRAINCLoG, an automatic drainer detection system utilizing Graph Neural Networks. This system effectively captures the multifaceted web of interactions within the NFT space through two distinct graphs: the NFT-User graph for transaction contexts and the User graph for social contexts. Evaluations using real-world NFT transaction data underscore the robustness and precision of our model. Additionally, we analyze the security of DRAINCLoG under a wide variety of evasion attacks.

View More Papers

PriSrv: Privacy-Enhanced and Highly Usable Service Discovery in Wireless...

Yang Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Robert H. Deng (School of Computing and Information Systems, Singapore Management University, Singapore), Guomin Yang (School of Computing and Information Systems, Singapore Management University, Singapore), Yingjiu Li (Department of Computer Science, University of Oregon, USA), HweeHwa Pang (School of Computing and Information Systems,…

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More

Powers of Tau in Asynchrony

Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More