Zhengxiong Luo (Tsinghua University), Kai Liang (Central South University), Yanyang Zhao (Tsinghua University), Feifan Wu (Tsinghua University), Junze Yu (Tsinghua University), Heyuan Shi (Central South University), Yu Jiang (Tsinghua University)

Automatic protocol reverse engineering is essential for various security applications. While many existing techniques achieve this task by analyzing static network traces, they face increasing challenges due to their dependence on high-quality samples. This paper introduces DynPRE, a protocol reverse engineering tool that exploits the interactive capabilities of protocol servers to obtain more semantic information and additional traffic for dynamic inference. DynPRE first processes the initial input network traces and learns the rules for interacting with the server in different contexts based on session-specific identifier detection and adaptive message rewriting. It then applies exploratory request crafting to obtain semantic information and supplementary samples and performs real-time analysis. Our evaluation on 12 widely used protocols shows that DynPRE identifies fields with a perfection score of 0.50 and infers message types with a V-measure of 0.94, significantly outperforming state-of-the-art methods like Netzob, Netplier, FieldHunter, BinaryInferno, and Nemesys, which achieve average perfection and V-measure scores of (0.15, 0.72), (0.16, 0.73), (0.15, 0.83), (0.15, -), and (0.31, -), respectively. Furthermore, case studies on unknown protocols highlight the effectiveness of DynPRE in real-world applications.

View More Papers

CP-IoT: A Cross-Platform Monitoring System for Smart Home

Hai Lin (Tsinghua University), Chenglong Li (Tsinghua University), Jiahai Yang (Tsinghua University), Zhiliang Wang (Tsinghua University), Linna Fan (National University of Defense Technology), Chenxin Duan (Tsinghua University)

Read More

MadRadar: A Black-Box Physical Layer Attack Framework on mmWave...

David Hunt (Duke University), Kristen Angell (Duke University), Zhenzhou Qi (Duke University), Tingjun Chen (Duke University), Miroslav Pajic (Duke University)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More

Make your IoT environments robust against adversarial machine learning...

Hamed Haddadpajouh (University of Guelph), Ali Dehghantanha (University of Guelph)

Read More