Ruisheng Shi (Beijing University of Posts and Telecommunications), Zhiyuan Peng (Beijing University of Posts and Telecommunications), Lina Lan (Beijing University of Posts and Telecommunications), Yulian Ge (Beijing University of Posts and Telecommunications), Peng Liu (Penn State University), Qin Wang (CSIRO Data61), Juan Wang (Wuhan University)

Eclipse attack is a major threat to the blockchain network layer, wherein an attacker isolates a target node by monopolizing all its connections, cutting it off from the rest of the network. Despite the attack's demonstrated effectiveness in Bitcoin (Usenix'15, SP'20, Usenix'21, CCS'21, SP'23) and partially in Ethereum (NDSS'23, SP'23), its applicability to a wider range of blockchain systems remains uncertain.

In this paper, we investigate eclipse attacks against Monero, a blockchain system known for its strong anonymity and pioneering the use of Dandelion++ (the state-of-the-art blockchain network layer protocol for transaction privacy protection). Our analysis of Monero's connection management mechanism reveals that existing eclipse attacks are surprisingly ineffective against Monero. We accordingly introduce the first practical eclipse attack against Monero by proposing a connection reset approach, which forces the target node to drop all benign connections and reconnect with malicious nodes. Specifically, we outline two methods for executing such an attack. The first one exploits the private transaction mechanisms, while the second method leverages the differences in propagation between stem transactions and fluff transactions under Dandelion++. Our attack is not only applicable to Monero but to all blockchain systems utilizing Dandelion++ and similar connection management strategies.

We conduct experiments on the Monero mainnet. Evaluation results confirm the feasibility of our attack. Unlike existing eclipse attacks, our connection reset-based approach does not require restarting the target node, significantly accelerating the attack process and making it more controllable. We also provide countermeasures to mitigate the proposed eclipse attack while minimizing the impact on Monero. In addition, we have ethically reported our investigation to Monero official team.

View More Papers

On-demand RFID: Improving Privacy, Security, and User Trust in...

Youngwook Do (JPMorganChase and Georgia Institute of Technology), Tingyu Cheng (Georgia Institute of Technology and University of Notre Dame), Yuxi Wu (Georgia Institute of Technology and Northeastern University), HyunJoo Oh(Georgia Institute of Technology), Daniel J. Wilson (Northeastern University), Gregory D. Abowd (Northeastern University), Sauvik Das (Carnegie Mellon University)

Read More

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

LeakLess: Selective Data Protection against Memory Leakage Attacks for...

Maryam Rostamipoor (Stony Brook University), Seyedhamed Ghavamnia (University of Connecticut), Michalis Polychronakis (Stony Brook University)

Read More