Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University), Baojian Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences), Chao Zhang (Tsinghua University)

Intel's Software Guard Extensions (SGX) offers an isolated execution environment, known as an enclave, where everything outside the enclave is considered potentially malicious, including non-enclave memory region, peripherals, and the operating system. Despite its robust attack model, the code running within enclaves is still prone to common memory corruption vulnerabilities. Moreover, such an attack model may introduce new threats or amplify existing ones. For instance, any direct memory access to untrusted memory from within an enclave can lead to Time-of-Check-Time-of-Use (TOCTOU) bugs since attackers are capable of controlling the whole untrusted memory. Moreover, null-pointer dereference may have a more severe security impact since the zero page controlled by the operating system is also considered malicious. Current fuzzing solutions, such as SGXFuzz and FuzzSGX, have limitations detecting such SGX-specific vulnerabilities.

In this paper, we propose EnclaveFuzz, a multi-dimension structure-aware fuzzing framework that analyzes enclave sources to extract input structures and correlations, then generates fuzz harnesses that can produce valid inputs to pass sanity checks. To conduct multi-dimensional fuzzing, EnclaveFuzz creates data for all three input dimensions of an enclave, including both parameters and return values that enter an enclave, as well as direct untrusted memory access from within an enclave. To detect more types of vulnerabilities, we design a new sanitizer to detect both SGX-specific vulnerabilities and typical memory corruption vulnerabilities. Lastly, we provide a custom SDK to accelerate the fuzzing process and execute the enclave without the need for special hardware. To verify the effectiveness of our solution, we applied our work to test 20 real-world open-source enclaves and found 162 bugs in 14 of them.

View More Papers

FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting

Meenatchi Sundaram Muthu Selva Annamalai (University College London), Igor Bilogrevic (Google), Emiliano De Cristofaro (University of California, Riverside)

Read More

Experimental Analyses of the Physical Surveillance Risks in Client-Side...

Ashish Hooda (University of Wisconsin-Madison), Andrey Labunets (UC San Diego), Tadayoshi Kohno (University of Washington), Earlence Fernandes (UC San Diego)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

From Interaction to Independence: zkSNARKs for Transparent and Non-Interactive...

Shahriar Ebrahimi (IDEAS-NCBR), Parisa Hassanizadeh (IDEAS-NCBR)

Read More