Sandra Siby (EPFL), Marc Juarez (University of Southern California), Claudia Diaz (imec-COSIC KU Leuven), Narseo Vallina-Rodriguez (IMDEA Networks Institute), Carmela Troncoso (EPFL)

Virtually every connection to an Internet service is preceded by a DNS lookup which is performed without any traffic-level protection, thus enabling manipulation, redirection, surveillance, and censorship. To address these issues, large organizations such as Google and Cloudflare are deploying recently standardized protocols that encrypt DNS traffic between end users and recursive resolvers such as DNS-over-TLS (DoT) and DNS-over-HTTPS (DoH). In this paper, we examine whether encrypting DNS traffic can protect users from traffic analysis-based monitoring and censoring. We propose a novel feature set to perform the attacks, as those used to attack HTTPS or Tor traffic are not suitable for DNS’ characteristics. We show that traffic analysis enables the identification of domains with high accuracy in closed and open world settings, using 124 times less data than attacks on HTTPS flows. We find that factors such as location, resolver, platform, or client do mitigate the attacks performance but they are far from completely stopping them. Our results indicate that DNS-based censorship is still possible on encrypted DNS traffic. In fact, we demonstrate that the standardized padding schemes are not effective. Yet, Tor — which does not effectively mitigate traffic analysis attacks on web traffic— is a good defense against DoH traffic analysis.

View More Papers

Compliance Cautions: Investigating Security Issues Associated with U.S. Digital-Security...

Rock Stevens (University of Maryland), Josiah Dykstra (Independent Security Researcher), Wendy Knox Everette (Leviathan Security Group), James Chapman (Independent Security Researcher), Garrett Bladow (Dragos), Alexander Farmer (Independent Security Researcher), Kevin Halliday (University of Maryland), Michelle L. Mazurek (University of Maryland)

Read More

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More