Isaiah J. King (The George Washington University)

Lateral movement is a key stage of system compromise used by advanced persistent threats, and detecting it is no simple task. But when network host logs are abstracted into discrete temporal graphs, the problem can be reframed as anomalous edge detection in an evolving network. We have implemented a formalized approach to this problem with a framework we call Euler. It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence encoding layer such as a recurrent neural network. In this talk, we will discuss the challenges we faced comparing Euler to other link prediction and anomaly detection models, and how we justified and qualified our conclusions about its effectiveness. We proposed a more precise terminology for temporal link prediction tasks to aid in reproducibility. Assertions about the relative quality of models are backed with inferential statistics, not just performance metrics, ensuring fair comparison. Finally, we discuss the value of various metrics and data sets for anomaly detection in general.

Speaker's biography

Isaiah J. King is a Ph.D. student at the George Washington University School of Engineering and Applied Sciences and an ARCS scholar. His research interests include unsupervised machine learning on graphs, and distributed machine learning, particularly as they apply to intrusion detection systems.

View More Papers

V-Range: Enabling Secure Ranging in 5G Wireless Networks

Mridula Singh (CISPA - Helmholtz Center for Information Security), Marc Roeschlin (ETH Zurich), Aanjhan Ranganathan (Northeastern University), Srdjan Capkun (ETH Zurich)

Read More

Chunked-Cache: On-Demand and Scalable Cache Isolation for Security Architectures

Ghada Dessouky (Technical University of Darmstadt), Emmanuel Stapf (Technical University of Darmstadt), Pouya Mahmoody (Technical University of Darmstadt), Alexander Gruler (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

HeadStart: Efficiently Verifiable and Low-Latency Participatory Randomness Generation at...

Hsun Lee (National Taiwan University), Yuming Hsu (National Taiwan University), Jing-Jie Wang (National Taiwan University), Hao Cheng Yang (National Taiwan University), Yu-Heng Chen (National Taiwan University), Yih-Chun Hu (University of Illinois at Urbana-Champaign), Hsu-Chun Hsiao (National Taiwan University)

Read More

A Study on Security and Privacy Practices in Danish...

Asmita Dalela (IT University of Copenhagen), Saverio Giallorenzo (Department of Computer Science and Engineering - University of Bologna), Oksana Kulyk (ITU Copenhagen), Jacopo Mauro (University of Southern Denmark), Elda Paja (IT University of Copenhagen)

Read More