Nimish Mishra (Department of Computer Science and Engineering, IIT Kharagpur), Anirban Chakraborty (Department of Computer Science and Engineering, IIT Kharagpur), Debdeep Mukhopadhyay (Department of Computer Science and Engineering, IIT Kharagpur)

The ever-increasing growth of Internet-of-Things (IoT) has led to wide-scale deployment of high-frequency, highly complex Systems-on-a-Chip (SoCs), which are capable of running a full-fledged operating system (OS). The presence of OS and other software countermeasures make SoCs resilient against the traditional fault attacks that are relevant on FPGAs and microprocessors. In this work, we present the first practical implications of targeting an orthogonal aspect of SoC's architecture: the system bus. We inject electromagnetic pulses onto the system bus during the execution of instructions involving processor-memory interaction. We show how address bus faults compromise software implementations of masked implementations of ciphers, illustrated using implementations of state-of-the-art post-quantum cryptography (PQC) schemes, leaking entire secret keys with a single fault. We also demonstrate that data bus faults can be controlled and exploited to launch Differential Fault Analysis (DFA) attacks on table-based implementation of the Advanced Encryption Standard (AES). Furthermore, we demonstrate that the impact of such bus faults can be far-reaching and mislead the security guarantees of the popular and widely used ARM TrustZone. We use data-bus faults (along with loopholes in the GlobalPlatform API specification) to mislead the signature verification step to load a malicious Trusted Application (TA) inside the TrustZone. We follow this up with address bus faults to steal symmetric encryption keys of other benign TAs in the system, leading to complete breakdown of security on TrustZone. We note that since the attack relies upon loopholes in the GlobalPlatform API specification, it is portable to any TEE following this specification. To emphasize upon this portability of the attack, we demonstrate successful installation of malicious TAs on two TrustZone implementations (OP-TEE and MyTEE) on two different platforms (Raspberry Pi 3 and Raspberry Pi 4). Finally, we propose countermeasures that can be integrated into the SoC environment to defend against these attack vectors.

View More Papers

SSL-WM: A Black-Box Watermarking Approach for Encoders Pre-trained by...

Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Pan Li (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China;…

Read More

Wait, What Does a SOC Do?

Joe Nehila, Drew Walsh (Deloitte And Touche)

Read More

AutoWatch: Learning Driver Behavior with Graphs for Auto Theft...

Paul Agbaje, Abraham Mookhoek, Afia Anjum, Arkajyoti Mitra (University of Texas at Arlington), Mert D. Pesé (Clemson University), Habeeb Olufowobi (University of Texas at Arlington)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More