Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Nicolas Christin (Carnegie Mellon University), Nuno Santos (INESC-ID / IST, Universidade de Lisboa)

Tor is one of the most popular anonymity networks in use today. Its ability to defend against flow correlation attacks is essential for providing strong anonymity guarantees. However, the feasibility of flow correlation attacks against Tor onion services (formerly known as "hidden services") has remained an open challenge. In this paper, we present an effective flow correlation attack that can deanonymize onion service sessions in the Tor network. Our attack is based on a novel distributed technique named Sliding Subset Sum (SUMo), which can be deployed by a group of colluding ISPs worldwide in a federated fashion. These ISPs collect Tor traffic at multiple vantage points in the network, and analyze it through a pipelined architecture based on machine learning classifiers and a novel similarity function based on the classic subset sum decision problem. These classifiers enable SUMo to deanonymize onion service sessions effectively and efficiently. We also analyze possible countermeasures that the Tor community can adopt to hinder the efficacy of these attacks.

View More Papers

Parrot-Trained Adversarial Examples: Pushing the Practicality of Black-Box Audio...

Rui Duan (University of South Florida), Zhe Qu (Central South University), Leah Ding (American University), Yao Liu (University of South Florida), Zhuo Lu (University of South Florida)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

GraphGuard: Detecting and Counteracting Training Data Misuse in Graph...

Bang Wu (CSIRO's Data61/Monash University), He Zhang (Monash University), Xiangwen Yang (Monash University), Shuo Wang (CSIRO's Data61/Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Shirui Pan (Griffith University), Xingliang Yuan (Monash University)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More