Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de Ciências, Universidade de Lisboa), Nicolas Christin (Carnegie Mellon University), Nuno Santos (INESC-ID / IST, Universidade de Lisboa)

Tor is one of the most popular anonymity networks in use today. Its ability to defend against flow correlation attacks is essential for providing strong anonymity guarantees. However, the feasibility of flow correlation attacks against Tor onion services (formerly known as "hidden services") has remained an open challenge. In this paper, we present an effective flow correlation attack that can deanonymize onion service sessions in the Tor network. Our attack is based on a novel distributed technique named Sliding Subset Sum (SUMo), which can be deployed by a group of colluding ISPs worldwide in a federated fashion. These ISPs collect Tor traffic at multiple vantage points in the network, and analyze it through a pipelined architecture based on machine learning classifiers and a novel similarity function based on the classic subset sum decision problem. These classifiers enable SUMo to deanonymize onion service sessions effectively and efficiently. We also analyze possible countermeasures that the Tor community can adopt to hinder the efficacy of these attacks.

View More Papers

AAKA: An Anti-Tracking Cellular Authentication Scheme Leveraging Anonymous Credentials

Hexuan Yu (Virginia Polytechnic Institute and State University), Changlai Du (Virginia Polytechnic Institute and State University), Yang Xiao (University of Kentucky), Angelos Keromytis (Georgia Institute of Technology), Chonggang Wang (InterDigital), Robert Gazda (InterDigital), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Reverse Engineering of Multiplexed CAN Frames (Long)

Alessio Buscemi, Thomas Engel (SnT, University of Luxembourg), Kang G. Shin (The University of Michigan)

Read More

Timing Channels in Adaptive Neural Networks

Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Read More

Modeling and Detecting Internet Censorship Events

Elisa Tsai (University of Michigan), Ram Sundara Raman (University of Michigan), Atul Prakash (University of Michigan), Roya Ensafi (University of Michigan)

Read More