Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

In this paper we investigate what textit{folk models of misinformation} exist on social media with a sample of 235 social media users. Work on social media misinformation does not investigate how ordinary users deal with it; rather, the focus is mostly on the anxiety, tensions, or divisions misinformation creates. Studying only the structural aspects also overlooks how misinformation is internalized by users on social media and thus is quick to prescribe "inoculation" strategies for the presumed lack of immunity to misinformation. How users grapple with social media content to develop "natural immunity" as a precursor to misinformation resilience, however, remains an open question. We have identified at least five textit{folk models} that conceptualize misinformation as either: textit{political (counter)argumentation}, textit{out-of-context narratives}, textit{inherently fallacious information}, textit{external propaganda}, or simply textit{entertainment}. We use the rich conceptualizations embodied in these folk models to uncover how social media users minimize adverse reactions to misinformation encounters in their everyday lives.

View More Papers

EdgeTDC: On the Security of Time Difference of Arrival...

Marc Roeschlin (ETH Zurich, Switzerland), Giovanni Camurati (ETH Zurich, Switzerland), Pascal Brunner (ETH Zurich, Switzerland), Mridula Singh (CISPA Helmholtz Center for Information Security), Srdjan Capkun (ETH Zurich, Switzerland)

Read More

WIP: The Feasibility of High-performance Message Authentication in Automotive...

Evan Allen (Virginia Tech), Zeb Bowden (Virginia Tech Transportation Institute), Randy Marchany (Virginia Tech), J. Scot Ransbottom (Virginia Tech)

Read More

Short: Certifiably Robust Perception Against Adversarial Patch Attacks: A...

Chong Xiang (Princeton University), Chawin Sitawarin (University of California, Berkeley), Tong Wu (Princeton University), Prateek Mittal (Princeton University)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More