Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

In this paper we investigate what textit{folk models of misinformation} exist on social media with a sample of 235 social media users. Work on social media misinformation does not investigate how ordinary users deal with it; rather, the focus is mostly on the anxiety, tensions, or divisions misinformation creates. Studying only the structural aspects also overlooks how misinformation is internalized by users on social media and thus is quick to prescribe "inoculation" strategies for the presumed lack of immunity to misinformation. How users grapple with social media content to develop "natural immunity" as a precursor to misinformation resilience, however, remains an open question. We have identified at least five textit{folk models} that conceptualize misinformation as either: textit{political (counter)argumentation}, textit{out-of-context narratives}, textit{inherently fallacious information}, textit{external propaganda}, or simply textit{entertainment}. We use the rich conceptualizations embodied in these folk models to uncover how social media users minimize adverse reactions to misinformation encounters in their everyday lives.

View More Papers

A Transcontinental Analysis of Account Remediation Protocols of Popular...

Philipp Markert (Ruhr University Bochum), Andrick Adhikari (University of Denver), Sanchari Das (University of Denver)

Read More

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

Are some prices more equal than others? Evaluating store-based...

Hugo Jonker (Open University Netherlands), Stefan Karsch (TH Koln), Benjamin Krumnow (TH Koln), Godfried Meesters (Open University Netherlands)

Read More

BlockScope: Detecting and Investigating Propagated Vulnerabilities in Forked Blockchain...

Xiao Yi (The Chinese University of Hong Kong), Yuzhou Fang (The Chinese University of Hong Kong), Daoyuan Wu (The Chinese University of Hong Kong), Lingxiao Jiang (Singapore Management University)

Read More