Wenqiang Li (State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences; Department of Computer Science, the University of Georgia, USA; School of Cyber Security, University of Chinese Academy of Sciences; Department of Electrical Engineering and Computer Science, the University of Kansas, USA), Le Guan (Department of Computer Science, the University of Georgia, USA), Jingqiang Lin (School of Cyber Security, University of Science and Technology of China), Jiameng Shi (Department of Computer Science, the University of Georgia, USA), Fengjun Li (Department of Electrical Engineering and Computer Science, the University of Kansas, USA)

Finding bugs in microcontroller (MCU) firmware is challenging, even for device manufacturers who own the source code. The MCU runs different instruction sets than x86 and exposes a very different development environment. This invalidates many existing sophisticated software testing tools on x86. To maintain a unified developing and testing environment, a straightforward way is to re-compile the source code into the native executable for a commodity machine (called rehosting). However, ad-hoc re-hosting is a daunting and tedious task and subject to many issues (library-dependence, kernel-dependence and hardware-dependence). In this work, we systematically explore the portability problem of MCU software and propose para-rehosting to ease the porting process. Specifically, we abstract and implement a portable MCU (PMCU) using the POSIX interface. It models common functions of the MCU cores. For peripheral specific logic, we propose HAL-based peripheral function replacement, in which high-level hardware functions are replaced with an equivalent backend driver on the host. These backend drivers are invoked by well-designed para-APIs and can be reused across many MCU OSs. We categorize common HAL functions into four types and implement templates for quick backend development. Using the proposed approach, we have successfully rehosted nine MCU OSs including the widely deployed Amazon FreeRTOS, ARM Mbed OS, Zephyr and LiteOS. To demonstrate the superiority of our approach in terms of security testing, we used off-the-shelf dynamic analysis tools (AFL and ASAN) against the rehosted programs and discovered 28 previously-unknown bugs, among which 5 were confirmed by CVE and the other 19 were confirmed by vendors at the time of writing.

View More Papers

Does Every Second Count? Time-based Evolution of Malware Behavior...

Alexander Küchler (Fraunhofer AISEC), Alessandro Mantovani (EURECOM), Yufei Han (NortonLifeLock Research Group), Leyla Bilge (NortonLifeLock Research Group), Davide Balzarotti (EURECOM)

Read More

(Short) Spoofing Mobileye 630’s Video Camera Using a Projector

Ben Nassi, Dudi Nassi, Raz Ben Netanel and Yuval Elovici (Ben-Gurion University of the Negev)

Read More

Bitcontracts: Supporting Smart Contracts in Legacy Blockchains

Karl Wüst (ETH Zurich), Loris Diana (ETH Zurich), Kari Kostiainen (ETH Zurich), Ghassan Karame (NEC Labs), Sinisa Matetic (ETH Zurich), Srdjan Capkun (ETH Zurich)

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More