Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Hashed Time-Locked Contracts (HTLCs) are a widely used primitive in blockchain systems such as payment channels, atomic swaps, etc. Unfortunately, HTLC is incentive-incompatible and is vulnerable to bribery attacks.
The state-of-the-art solution is MAD-HTLC (Oakland'21), which proposes an elegant idea that leverages miners' profit-driven nature to defeat bribery attacks.

In this paper, we show that MAD-HTLC is still vulnerable as it only considers a somewhat narrow set of textit{passive} strategies by miners. Through a family of novel textit{reverse-bribery} attacks, we show concrete textit{active} strategies that miners can take to break MAD-HTLC and profit at the loss of MAD-HTLC users. For these attacks, we present their implementation and game-theoretical profitability analysis.

Based on the learnings from our attacks, we propose a new HTLC realization, He-HTLC (Our specification is lightweight and inert to incentive manipulation attacks. Hence, we call it He-HTLC where He stands for Helium.) that is provably secure against all possible strategic manipulation (passive and active). In addition to being secure in a stronger adversary model, He-HTLC achieves other desirable features such as low and user-adjustable collateral, making it more practical to implement and use the proposed schemes. We implemented He-HTLC on Bitcoin and the transaction cost of He-HTLC is comparative to average Bitcoin transaction fees.

View More Papers

“I didn't click”: What users say when reporting phishing

Nikolas Pilavakis, Adam Jenkins, Nadin Kokciyan, Kami Vaniea (University of Edinburgh)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More

A Systematic Study of the Consistency of Two-Factor Authentication...

Sanam Ghorbani Lyastani (CISPA Helmholtz Center for Information Security, Saarland University), Michael Backes (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Trellis: Robust and Scalable Metadata-private Anonymous Broadcast

Simon Langowski (Massachusetts Institute of Technology), Sacha Servan-Schreiber (Massachusetts Institute of Technology), Srinivas Devadas (Massachusetts Institute of Technology)

Read More