Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Enterprises are increasingly outsourcing network management (e.g., troubleshooting routing issues) to reduce cost and improve efficiency, either by hiring third-party contractors or by outsourcing to third-party vendors. Unfortunately, recent events have shown that this outsourcing model has become a new source of network incidents in customer networks. In this work, we argue that a risk-aware outsourcing approach is needed that enables customers to measure and assess risk transparently and make informed decisions to minimize harm. We first concretely define the notion of risk in the context of outsourced network management and then present an end-to-end framework, called Heimdall, which enables enterprises to assess, monitor, and respond to risk. Heimdall automatically builds a dependency graph to accurately assess the risk of an outsourced task, and uses a fine-grained reference monitor to monitor and mitigate potential risks during operation. Our expert validation results show that Heimdall effectively controls risk for outsourced network operations, resolving 92% of practical issues at the minimal risk level while incurring only a marginal timing overhead of approximately 7%.

View More Papers

Decoupling Permission Management from Cryptography for Privacy-Preserving Systems

Ruben De Smet (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), Tom Godden (Department of Engineering Technology (INDI), Vrije Universiteit Brussel), Kris Steenhaut (Department of Engineering Technology (INDI), Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel), An Braeken (Department of Engineering Technology (INDI), Vrije Universiteit Brussel)

Read More

LightAntenna: Characterizing the Limits of Fluorescent Lamp-Induced Electromagnetic Interference

Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More

VoiceRadar: Voice Deepfake Detection using Micro-Frequency and Compositional Analysis

Kavita Kumari (Technical University of Darmstadt), Maryam Abbasihafshejani (University of Texas at San Antonio), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Kamyar Arshi (Technical University of Darmstadt), Murtuza Jadliwala (University of Texas at San Antonio), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More