Yuejie Wang (Peking University), Qiutong Men (New York University), Yongting Chen (New York University Shanghai), Jiajin Liu (New York University Shanghai), Gengyu Chen (Carnegie Mellon University), Ying Zhang (Meta), Guyue Liu (Peking University), Vyas Sekar (Carnegie Mellon University)

Enterprises are increasingly outsourcing network management (e.g., troubleshooting routing issues) to reduce cost and improve efficiency, either by hiring third-party contractors or by outsourcing to third-party vendors. Unfortunately, recent events have shown that this outsourcing model has become a new source of network incidents in customer networks. In this work, we argue that a risk-aware outsourcing approach is needed that enables customers to measure and assess risk transparently and make informed decisions to minimize harm. We first concretely define the notion of risk in the context of outsourced network management and then present an end-to-end framework, called Heimdall, which enables enterprises to assess, monitor, and respond to risk. Heimdall automatically builds a dependency graph to accurately assess the risk of an outsourced task, and uses a fine-grained reference monitor to monitor and mitigate potential risks during operation. Our expert validation results show that Heimdall effectively controls risk for outsourced network operations, resolving 92% of practical issues at the minimal risk level while incurring only a marginal timing overhead of approximately 7%.

View More Papers

MineShark: Cryptomining Traffic Detection at Scale

Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

Read More

LADDER: Multi-Objective Backdoor Attack via Evolutionary Algorithm

Dazhuang Liu (Delft University of Technology), Yanqi Qiao (Delft University of Technology), Rui Wang (Delft University of Technology), Kaitai Liang (Delft University of Technology), Georgios Smaragdakis (Delft University of Technology)

Read More

Scale-MIA: A Scalable Model Inversion Attack against Secure Federated...

Shanghao Shi (Virginia Tech), Ning Wang (University of South Florida), Yang Xiao (University of Kentucky), Chaoyu Zhang (Virginia Tech), Yi Shi (Virginia Tech), Y. Thomas Hou (Virginia Polytechnic Institute and State University), Wenjing Lou (Virginia Polytechnic Institute and State University)

Read More

Evaluating Machine Learning-Based IoT Device Identification Models for Security...

Eman Maali (Imperial College London), Omar Alrawi (Georgia Institute of Technology), Julie McCann (Imperial College London)

Read More