Runze Zhang (Georgia Institute of Technology), Mingxuan Yao (Georgia Institute of Technology), Haichuan Xu (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Jeman Park (Kyung Hee University), Brendan Saltaformaggio (Georgia Institute of Technology)

For decades, law enforcement and commercial entities have attempted botnet takedowns with mixed success. These efforts, relying on DNS sink-holing or seizing C&C infrastructure, require months of preparation and often omit the cleanup of left-over infected machines. This allows botnet operators to push updates to the bots and re-establish their control. In this paper, we expand the goal of malware takedowns to include the covert and timely removal of frontend bots from infected devices. Specifically, this work proposes seizing the malware's built-in update mechanism to distribute crafted remediation payloads. Our research aims to enable this necessary but challenging remediation step after obtaining legal permission. We developed ECHO, an automated malware forensics pipeline that extracts payload deployment routines and generates remediation payloads to disable or remove the frontend bots on infected devices. Our study of 702 Android malware shows that 523 malware can be remediated via ECHO's takedown approach, ranging from covertly warning users about malware infection to uninstalling the malware.

View More Papers

Privacy-Preserving Data Deduplication for Enhancing Federated Learning of Language...

Aydin Abadi (Newcastle University), Vishnu Asutosh Dasu (Pennsylvania State University), Sumanta Sarkar (University of Warwick)

Read More

ERW-Radar: An Adaptive Detection System against Evasive Ransomware by...

Lingbo Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Yuhui Zhang (Institute of Information Engineering, Chinese Academy of Sciences), Zhilu Wang (Institute of Information Engineering, Chinese Academy of Sciences), Fengkai Yuan (Institute of Information Engineering, CAS), Rui Hou (Institute of Information Engineering, Chinese Academy of Sciences)

Read More

SafeSplit: A Novel Defense Against Client-Side Backdoor Attacks in...

Phillip Rieger (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Kavita Kumari (Technical University of Darmstadt), Tigist Abera (Technical University of Darmstadt), Jonathan Knauer (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More