Kyungho Joo (Korea University), Wonsuk Choi (Korea University), Dong Hoon Lee (Korea University)

Recently, the traditional way to unlock car doors has been replaced with a keyless entry system which proves more convenient for automobile owners. When a driver with a key fob is in vicinity of the vehicle, doors automatically unlock on user command. However, unfortunately, it has been known that these keyless entry systems are vulnerable to signal-relaying attacks. While it is evident that automobile manufacturers incorporate preventative methods to secure these keyless entry systems, a range of attacks continue to occur. Relayed signals fit into the valid packets that are verified as legitimate, and this makes it is difficult to distinguish a legitimate request for doors to be unlocked from malicious signals. In response to this vulnerability, this paper presents an RF-fingerprinting method (coined “HOld the DOoR”, HODOR) to detect attacks on keyless entry systems, which is the first attempt to exploit RF-fingerprint technique in automotive domain. HODOR is designed as a sub-authentication system that supports existing authentication systems for keyless entry systems and does not require any modification of the main system to perform. Through a series of experiments, the results demonstrate that HODOR competently and reliably detects attacks on keyless entry systems. HODOR achieves both an average false positive rate (FPR) of 0.27% with a false negative rate (FNR) of 0% for the detection of simulated attacks corresponding to the current issue on keyless entry car theft. Furthermore, HODOR was also observed under environmental factors: temperature variation, non-line-of-sight (NLoS) conditions and battery aging. HODOR yields a false positive rate of 1.32% for the identification of a legitimated key fob which is even under NLoS condition. Based on the experimental results, it is expected that HODOR will provide a secure service for keyless entry systems, while remaining convenient.

View More Papers

Practical Traffic Analysis Attacks on Secure Messaging Applications

Alireza Bahramali (University of Massachusetts Amherst), Amir Houmansadr (University of Massachusetts Amherst), Ramin Soltani (University of Massachusetts Amherst), Dennis Goeckel (University of Massachusetts Amherst), Don Towsley (University of Massachusetts Amherst)

Read More

Into the Deep Web: Understanding E-commerce Fraud from Autonomous...

Peng Wang (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington), Yue Qin (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington)

Read More

Custos: Practical Tamper-Evident Auditing of Operating Systems Using Trusted...

Riccardo Paccagnella (University of Illinois at Urbana–Champaign), Pubali Datta (University of Illinois at Urbana–Champaign), Wajih Ul Hassan (University of Illinois at Urbana–Champaign), Adam Bates (University of Illinois at Urbana–Champaign), Christopher W. Fletcher (University of Illinois at Urbana–Champaign), Andrew Miller (University of Illinois at Urbana–Champaign), Dave Tian (Purdue University)

Read More

Learning-based Practical Smartphone Eavesdropping with Built-in Accelerometer

Zhongjie Ba (Zhejiang University and McGill University), Tianhang Zheng (University of Toronto), Xinyu Zhang (Zhejiang University), Zhan Qin (Zhejiang University), Baochun Li (University of Toronto), Xue Liu (McGill University), Kui Ren (Zhejiang University)

Read More