Kyungho Joo (Korea University), Wonsuk Choi (Korea University), Dong Hoon Lee (Korea University)

Recently, the traditional way to unlock car doors has been replaced with a keyless entry system which proves more convenient for automobile owners. When a driver with a key fob is in vicinity of the vehicle, doors automatically unlock on user command. However, unfortunately, it has been known that these keyless entry systems are vulnerable to signal-relaying attacks. While it is evident that automobile manufacturers incorporate preventative methods to secure these keyless entry systems, a range of attacks continue to occur. Relayed signals fit into the valid packets that are verified as legitimate, and this makes it is difficult to distinguish a legitimate request for doors to be unlocked from malicious signals. In response to this vulnerability, this paper presents an RF-fingerprinting method (coined “HOld the DOoR”, HODOR) to detect attacks on keyless entry systems, which is the first attempt to exploit RF-fingerprint technique in automotive domain. HODOR is designed as a sub-authentication system that supports existing authentication systems for keyless entry systems and does not require any modification of the main system to perform. Through a series of experiments, the results demonstrate that HODOR competently and reliably detects attacks on keyless entry systems. HODOR achieves both an average false positive rate (FPR) of 0.27% with a false negative rate (FNR) of 0% for the detection of simulated attacks corresponding to the current issue on keyless entry car theft. Furthermore, HODOR was also observed under environmental factors: temperature variation, non-line-of-sight (NLoS) conditions and battery aging. HODOR yields a false positive rate of 1.32% for the identification of a legitimated key fob which is even under NLoS condition. Based on the experimental results, it is expected that HODOR will provide a secure service for keyless entry systems, while remaining convenient.

View More Papers

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

µRAI: Securing Embedded Systems with Return Address Integrity

Naif Saleh Almakhdhub (Purdue University and King Saud University), Abraham A. Clements (Sandia National Laboratories), Saurabh Bagchi (Purdue University), Mathias Payer (EPFL)

Read More

FlowPrint: Semi-Supervised Mobile-App Fingerprinting on Encrypted Network Traffic

Thijs van Ede (University of Twente), Riccardo Bortolameotti (Bitdefender), Andrea Continella (UC Santa Barbara), Jingjing Ren (Northeastern University), Daniel J. Dubois (Northeastern University), Martina Lindorfer (TU Wien), David Choffnes (Northeastern University), Maarten van Steen (University of Twente), Andreas Peter (University of Twente)

Read More