William Blair (Boston University), Andrea Mambretti (Northeastern University), Sajjad Arshad (Northeastern University), Michael Weissbacher (Northeastern University), William Robertson (Northeastern University), Engin Kirda (Northeastern University), Manuel Egele (Boston University)

Fifteen billion devices run Java and many of them are connected to the Internet. As this ecosystem continues to grow, it remains an important task to discover the unknown security threats these devices face. Fuzz testing repeatedly runs software on random inputs in order to trigger unexpected program behaviors, such as crashes or timeouts, and has historically revealed serious security vulnerabilities. Contemporary fuzz testing techniques focus on identifying memory corruption vulnerabilities that allow adversaries to achieve remote code execution. Meanwhile, algorithmic complexity (AC) vulnerabilities, which are a common attack vector for denial-of-service attacks, remain an understudied threat.

In this paper, we present HotFuzz, a framework for automatically discovering AC vulnerabilities in Java libraries. HotFuzz uses micro-fuzzing, a genetic algorithm that evolves arbitrary Java objects in order to trigger the worst-case performance for a method under test. We define Small Recursive Instantiation (SRI) which provides seed inputs to micro-fuzzing represented as Java objects. After micro-fuzzing, HotFuzz synthesizes test cases that triggered AC vulnerabilities into Java programs and monitors their execution in order to reproduce vulnerabilities outside the analysis framework. HotFuzz outputs those programs that exhibit high CPU utilization as witnesses for AC vulnerabilities in a Java library.

We evaluate HotFuzz over the Java Runtime Environment (JRE), the 100 most popular Java libraries on Maven, and challenges contained in the DARPA Space and Time Analysis for Cyber-Security (STAC) program. We compare the effectiveness of using seed inputs derived using SRI against using empty values. In this evaluation, we verified known AC vulnerabilities, discovered previously unknown AC vulnerabilities that we responsibly reported to vendors, and received confirmation from both IBM and Oracle. Our results demonstrate micro-fuzzing finds AC vulnerabilities in real-world software, and that micro-fuzzing with SRI derived seed inputs complements using empty seed inputs.

View More Papers

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

Metamorph: Injecting Inaudible Commands into Over-the-air Voice Controlled Systems

Tao Chen (City University of Hong Kong), Longfei Shangguan (Microsoft), Zhenjiang Li (City University of Hong Kong), Kyle Jamieson (Princeton University)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More