Guanlong Wu (Southern University of Science and Technology), Zheng Zhang (ByteDance Inc.), Yao Zhang (ByteDance Inc.), Weili Wang (Southern University of Science and Technolog), Jianyu Niu (Southern University of Science and Technolog), Ye Wu (ByteDance Inc.), Yinqian Zhang (Southern University of Science and Technology (SUSTech))

Large Language Models (LLMs), which laid the groundwork for Artificial General Intelligence (AGI), have recently gained significant traction in academia and industry due to their disruptive applications. In order to enable scalable applications and efficient resource management, various multi-tenant LLM serving frameworks have been proposed, in which the LLM caters to the needs of multiple users simultaneously. One notable mechanism in recent works, such as SGLang and vLLM, is sharing the Key-Value (KV) cache for identical token sequences among multiple users, saving both memory and computation. This paper presents the first investigation on security risks
associated with multi-tenant LLM serving. We show that the state-of-the-art mechanisms of KV cache sharing may lead to new side channel attack vectors, allowing unauthorized reconstruction
of user prompts and compromising sensitive user information among mutually distrustful users. Specifically, we introduce our attack, PROMPTPEEK, and apply it to three scenarios where the
adversary, with varying degrees of prior knowledge, is capable of reverse-engineering prompts from other users. This study underscores the need for careful resource management in multi-tenant LLM serving and provides critical insights for future security enhancement.

View More Papers

Characterizing the Impact of Audio Deepfakes in the Presence...

Magdalena Pasternak (University of Florida), Kevin Warren (University of Florida), Daniel Olszewski (University of Florida), Susan Nittrouer (University of Florida), Patrick Traynor (University of Florida), Kevin Butler (University of Florida)

Read More

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More

TZ-DATASHIELD: Automated Data Protection for Embedded Systems via Data-Flow-Based...

Zelun Kong (University of Texas at Dallas), Minkyung Park (University of Texas at Dallas), Le Guan (University of Georgia), Ning Zhang (Washington University in St. Louis), Chung Hwan Kim (University of Texas at Dallas)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More