Anastasis Keliris (NYU), Michail Maniatakos (NYU Abu Dhabi)

The security of Industrial Control Systems (ICS) has been attracting increased attention over the past years, following the discovery of real threats targeting industrial environments. Despite this attention, automation of the reverse engineering process of ICS binaries for programmable logic controllers remains an open problem, mainly due to the use of proprietary compilers by ICS vendors. Such automation could be a double-edged sword; on the one hand it could accelerate digital forensic investigations and incident response actions, while on the other hand it could enable dynamic generation of malicious ICS payloads. In this work, we propose a structured methodology that automates the reverse engineering process for ICS binaries taking into account their unique domain-specific characteristics. We apply this methodology to develop the modular Industrial Control Systems Reverse Engineering Framework (ICSREF), and instantiate ICSREF modules for reversing binaries compiled with CODESYS, a widely used software stack and compiler for PLCs. To evaluate our framework we create a database of samples by collecting real PLC binaries from public code repositories, as well as developing binaries in-house. Our results demonstrate that ICSREF can successfully handle diverse PLC binaries from varied industry sectors, irrespective of the programming language used. Furthermore, we deploy ICSREF on a commercial smartphone which orchestrates and launches a completely automated process-aware attack against a chemical process testbed. This example of dynamic payload generation showcases how ICSREF can enable sophisticated attacks without any prior knowledge.

View More Papers

Latex Gloves: Protecting Browser Extensions from Probing and Revelation...

Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More

PeriScope: An Effective Probing and Fuzzing Framework for the...

Dokyung Song (University of California, Irvine), Felicitas Hetzelt (Technical University of Berlin), Dipanjan Das (University of California, Santa Barbara), Chad Spensky (University of California, Santa Barbara), Yeoul Na (University of California, Irvine), Stijn Volckaert (University of California, Irvine and KU Leuven), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara),…

Read More

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’...

Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Read More