Ian Martiny (University of Colorado Boulder), Gabriel Kaptchuk (Boston University), Adam Aviv (The George Washington University), Dan Roche (U.S. Naval Avademy), Eric Wustrow (University of Colorado Boulder)

The Signal messaging service recently deployed a emph{sealed sender} feature that provides sender anonymity by cryptographically hiding a message's sender from the service provider. We demonstrate, both theoretically and empirically, that this one-sided anonymity is broken when two parties send multiple messages back and forth; that is, the promise of sealed sender does not emph{compose} over a conversation of messages. Our attack is in the family of Statistical Disclosure Attacks (SDAs), and is made particularly effective by emph{delivery receipts} that inform the sender that a message has been successfully delivered, which are enabled by default on Signal. We show using theoretical and simulation-based models that Signal could link sealed sender users in as few as 5 messages.

Our attack goes beyond tracking users via network-level identifiers by working at the application layer of Signal. This make our attacks particularly effective against users that employ Tor or VPNs as anonymity protections, who would otherwise be secure against network tracing. We present a range of practical mitigation strategies that could be employed to prevent such attacks, and we prove our protocols secure using a new simulation-based security definition for one-sided anonymity over any sequence of messages. The simplest provably-secure solution uses many of the same mechanisms already employed by the (flawed) sealed-sender protocol used by Signal, which means it could be deployed with relatively small overhead costs; we estimate that the extra cryptographic cost of running our most sophisticated solution in a system with millions of users would be less than $40 per month.

View More Papers

WeepingCAN: A Stealthy CAN Bus-off Attack

Gedare Bloom (University of Colorado Colorado Springs) Best Paper Award Winner ($300 cash prize)!

Read More

LaKSA: A Probabilistic Proof-of-Stake Protocol

Daniel Reijsbergen (Singapore University of Technology and Design), Pawel Szalachowski (Singapore University of Technology and Design), Junming Ke (University of Tartu), Zengpeng Li (Singapore University of Technology and Design), Jianying Zhou (Singapore University of Technology and Design)

Read More

Awakening the Web's Sleeper Agents: Misusing Service Workers for...

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

Read More

HTTPS-Only: Upgrading all connections to https: in Web Browsers

Christoph Kerschbaumer, Julian Gaibler, Arthur Edelstein (Mozilla Corporation), Thyla van der Merwey (ETH Zurich)

Read More