Yarin Ozery (Ben-Gurion University of the Negev, Akamai Technologies inc.), Asaf Nadler (Ben-Gurion University of the Negev), Asaf Shabtai (Ben-Gurion University of the Negev)

Data exfiltration over the DNS protocol and its detection have been researched extensively in recent years. Prior studies focused on offline detection methods, which although capable of detecting attacks, allow a large amount of data to be exfiltrated before the attack is detected and dealt with. In this paper, we introduce Information-based Heavy Hitters (ibHH), a real-time detection method which is based on live estimations of the amount of information transmitted to registered domains. ibHH uses constant-size memory and supports constant-time queries, which makes it suitable for deployment on recursive DNS servers to further reduce detection and response time. In our eval- uation, we compared the performance of the proposed method to that of leading state-of-the-art DNS exfiltration detection methods on real-world datasets comprising over 250 billion DNS queries. The evaluation demonstrates ibHH’s ability to successfully detect exfiltration rates as slow as 0.7B/s, with a false positive alert rate of less than 0.004, with significantly lower resource consumption compared to other methods.

View More Papers

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

Eavesdropping on Black-box Mobile Devices via Audio Amplifier's EMR

Huiling Chen (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Wenqiang Jin (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Yupeng Hu (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Zhenyu Ning (College of Computer Science and Electronic Engineering, Hunan University, Changsha, China), Kenli Li (College…

Read More

VETEOS: Statically Vetting EOSIO Contracts for the “Groundhog Day”...

Levi Taiji Li (University of Utah), Ningyu He (Peking University), Haoyu Wang (Huazhong University of Science and Technology), Mu Zhang (University of Utah)

Read More

Maginot Line: Assessing a New Cross-app Threat to PII-as-Factor...

Fannv He (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yan Jia (DISSec, College of Cyber Science, Nankai University, China), Jiayu Zhao (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China), Yue Fang (National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences, China),…

Read More