Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or projected colored patches to signs, that cause CAV misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed an effective physical-world attack that leverages the sensitivity of filterless image sensors and the properties of Infrared Laser Reflections (ILRs), which are invisible to humans. The attack is designed to affect CAV cameras and perception, undermining traffic sign recognition by inducing misclassification. In this work, we formulate the threat model and requirements for an ILR-based traffic sign perception attack to succeed. We evaluate the effectiveness of the ILR attack with real-world experiments against two major traffic sign recognition architectures on four IR-sensitive cameras. Our black-box optimization methodology allows the attack to achieve up to a 100% attack success rate in indoor, static scenarios and a ≥80.5% attack success rate in our outdoor, moving vehicle scenarios. We find the latest state-of-the-art certifiable defense is ineffective against ILR attacks as it mis-certifies ≥33.5% of cases. To address this, we propose a detection strategy based on the physical properties of IR laser reflections which can detect 96% of ILR attacks.

View More Papers

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

WIP: A Trust Assessment Method for In-Vehicular Networks using...

Artur Hermann, Natasa Trkulja (Ulm University - Institute of Distributed Systems), Anderson Ramon Ferraz de Lucena, Alexander Kiening (DENSO AUTOMOTIVE Deutschland GmbH), Ana Petrovska (Huawei Technologies), Frank Kargl (Ulm University - Institute of Distributed Systems)

Read More

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More

EM Eye: Characterizing Electromagnetic Side-channel Eavesdropping on Embedded Cameras

Yan Long (University of Michigan), Qinhong Jiang (Zhejiang University), Chen Yan (Zhejiang University), Tobias Alam (University of Michigan), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University), Kevin Fu (Northeastern University)

Read More