Z. Berkay Celik (Penn State University), Gang Tan (Penn State University), Patrick McDaniel (Penn State University)

Broadly defined as the Internet of Things (IoT), the growth of commodity devices that integrate physical processes with digital connectivity has changed the way we live, play, and work. To date, the traditional approach to securing IoT has treated devices individually. However, in practice, it has been recently shown that the interactions among devices are often the real cause of safety and security violations. In this paper, we present IoTGuard, a dynamic, policy-based enforcement system for IoT, which protects users from unsafe and insecure device states by monitoring the behavior of IoT and trigger-action platform apps. IoTGuard operates in three phases: (a) implementation of a code instrumentor that adds extra logic to an app's source code to collect app's information at runtime, (b) storing the apps' information in a dynamic model that represents the runtime execution behavior of apps, and (c) identifying IoT safety and security policies, and enforcing relevant policies on the dynamic model of individual apps or sets of interacting apps. We demonstrate IoTGuard on 20 flawed apps and find that IoTGuard correctly enforces 12 of the 12 policy violations. In addition, we evaluate IoTGuard on 35 SmartThings IoT and 30 IFTTT trigger-action platform market apps executed in a simulated smart home. IoTGuard enforces 11 unique policies and blocks 16 states in six (17.1%) SmartThings and five (16.6%) IFTTT apps. IoTGuard imposes only 17.3% runtime overhead on an app and 19.8% for five interacting apps. Through this effort, we introduce a rigorously grounded system for enforcing correct operation of IoT devices through systematically identified IoT policies, demonstrating the effectiveness and value of monitoring IoT apps with tools such as IoTGuard.

View More Papers

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

A Systematic Framework to Generate Invariants for Anomaly Detection...

Cheng Feng (Imperial College London & Siemens Corporate Technology), Venkata Reddy Palleti (Singapore University of Technology and Design), Aditya Mathur (Singapore University of Technology and Design), Deeph Chana (Imperial College London)

Read More

Understanding Open Ports in Android Applications: Discovery, Diagnosis, and...

Daoyuan Wu (Singapore Management University), Debin Gao (Singapore Management University), Rocky K. C. Chang (The Hong Kong Polytechnic University), En He (China Electronic Technology Cyber Security Co., Ltd.), Eric K. T. Cheng (The Hong Kong Polytechnic University), Robert H. Deng (Singapore Management University)

Read More

Cleaning Up the Internet of Evil Things: Real-World Evidence...

Orcun Cetin (Delft University of Technology), Carlos Gañán (Delft University of Technology), Lisette Altena (Delft University of Technology), Takahiro Kasama (National Institute of Information and Communications Technology), Daisuke Inoue (National Institute of Information and Communications Technology), Kazuki Tamiya (Yokohama National University), Ying Tie (Yokohama National University), Katsunari Yoshioka (Yokohama National University), Michel van Eeten (Delft…

Read More