Taifeng Liu (Xidian University), Yang Liu (Xidian University), Zhuo Ma (Xidian University), Tong Yang (Peking University), Xinjing Liu (Xidian University), Teng Li (Xidian University), Jianfeng Ma (Xidian University)

The vision-based perception modules in autonomous vehicles (AVs) are prone to physical adversarial patch attacks. However, most existing attacks indiscriminately affect all passing vehicles. This paper introduces L-HAWK, a novel controllable physical adversarial patch activated by long-distance laser signals. L-HAWK is designed to target specific vehicles when the adversarial patch is triggered by laser signals while remaining benign under normal conditions. To achieve this goal and address the unique challenges associated with laser signals, we propose an asynchronous learning method for L-HAWK to determine the optimal laser parameters and the corresponding adversarial patch. To enhance the attack robustness in real-world scenarios, we introduce a multi-angle and multi-position simulation mechanism, a noise approximation approach, and a progressive sampling-based method. L-HAWK has been validated through extensive experiments in both digital and physical environments. Compared to a 59% success rate of TPatch (Usenix ’23) at 7 meters, L-HAWK achieves a 91.9% average attack success rate at 50 meters. This represents a 56% improvement in attack success rate and a more than sevenfold increase in attack distance.

View More Papers

EvoCrawl: Exploring Web Application Code and State using Evolutionary...

Xiangyu Guo (University of Toronto), Akshay Kawlay (University of Toronto), Eric Liu (University of Toronto), David Lie (University of Toronto)

Read More

CLIBE: Detecting Dynamic Backdoors in Transformer-based NLP Models

Rui Zeng (Zhejiang University), Xi Chen (Zhejiang University), Yuwen Pu (Zhejiang University), Xuhong Zhang (Zhejiang University), Tianyu Du (Zhejiang University), Shouling Ji (Zhejiang University)

Read More

ScopeVerif: Analyzing the Security of Android’s Scoped Storage via...

Zeyu Lei (Purdue University), Güliz Seray Tuncay (Google), Beatrice Carissa Williem (Purdue University), Z. Berkay Celik (Purdue University), Antonio Bianchi (Purdue University)

Read More

type++: Prohibiting Type Confusion with Inline Type Information

Nicolas Badoux (EPFL), Flavio Toffalini (Ruhr-Universität Bochum, EPFL), Yuseok Jeon (UNIST), Mathias Payer (EPFL)

Read More