Alexander Sjösten (Chalmers University of Technology), Steven Van Acker (Chalmers University of Technology), Pablo Picazo-Sanchez (Chalmers University of Technology), Andrei Sabelfeld (Chalmers University of Technology)

Browser extensions enable rich experience for the users of today's web. Being
deployed with elevated privileges, extensions are given the power to overrule
web pages. As a result, web pages often seek to detect the installed extensions,
sometimes for benign adoption of their behavior but sometimes as part of
privacy-violating user fingerprinting.
Researchers have studied a class of attacks that allow detecting extensions by
probing for Web Accessible Resources (WARs) via URLs that include public
extension IDs.
Realizing privacy risks associated with WARs, Firefox has recently moved to
randomize a browser extension's ID, prompting the Chrome team to plan for
following the same path.
However, rather than mitigating the issue, the randomized IDs can in fact
exacerbate the extension detection problem, enabling attackers to use a
randomized ID as a reliable fingerprint of a user.
We study a class of extension revelation attacks, where extensions reveal
themselves by injecting their code on web pages.
We demonstrate how a combination of revelation and probing can uniquely identify
90% out of all extensions injecting content, in spite of a randomization scheme.
We perform a series of large-scale studies to estimate possible implications of
both classes of attacks.
As a countermeasure, we propose a browser-based mechanism that enables control
over which extensions are loaded on which web pages and present a proof of
concept implementation which blocks both classes of attacks.

View More Papers

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

Vault: Fast Bootstrapping for the Algorand Cryptocurrency

Derek Leung (MIT CSAIL), Adam Suhl (MIT CSAIL), Yossi Gilad (MIT CSAIL), Nickolai Zeldovich (MIT CSAIL)

Read More

Robust Performance Metrics for Authentication Systems

Shridatt Sugrim (Rutgers University), Can Liu (Rutgers University), Meghan McLean (Rutgers University), Janne Lindqvist (Rutgers University)

Read More

Analyzing Semantic Correctness with Symbolic Execution: A Case Study...

Sze Yiu Chau (Purdue University), Moosa Yahyazadeh (The University of Iowa), Omar Chowdhury (The University of Iowa), Aniket Kate (Purdue University), Ninghui Li (Purdue University)

Read More