Huaiyu Yan (Southeast University), Zhen Ling (Southeast University), Haobo Li (Southeast University), Lan Luo (Anhui University of Technology), Xinhui Shao (Southeast University), Kai Dong (Southeast University), Ping Jiang (Southeast University), Ming Yang (Southeast University), Junzhou Luo (Southeast University, Nanjing, P.R. China), Xinwen Fu (University of Massachusetts Lowell)

Trusted execution environments (TEEs), like TrustZone, are pervasively employed to protect security sensitive programs and data from various attacks. We target compact TEE operating systems like OP-TEE, which implement minimum TEE internal core APIs. Such a TEE OS often has poor device driver support and we want to alleviate such issue by reusing existing Linux drivers inside TEE OSes. An intuitive approach is to port all its dependency functions into the TEE OS so that the driver can directly execute inside the TEE. But this approach significantly enlarges the trusted computing base (TCB), making the TEE OS no longer compact.

In this paper, we propose a TEE driver execution environment---Linux driver runtime (LDR). A Linux driver needs two types of functions, library functions and Linux kernel subsystem functions that a compact TEE OS does not have. The LDR reuses the existing TEE OS library functions whenever possible and redirects the kernel subsystem function calls to the Linux kernel in the normal world. LDR is realized as a sandbox environment, which confines the Linux driver inside the TEE through the ARM domain access control features to address associated security issues. The sandbox mediates the driver's TEE functions calls, sanitizing arguments and return values as well as enforcing forward control flow integrity. We implement and deploy an LDR prototype on an NXP IMX6Q SABRE-SD evaluation board, adapt 6 existing Linux drivers into LDR, and evaluate their performance. The experimental results show that the LDR drivers can achieve comparable performance with their Linux counterparts with negligible overheads. We are the first to reuse functions in both the TEE OS and normal world Linux kernel to run a TEE device driver and address related security issues.

View More Papers

When Cryptography Needs a Hand: Practical Post-Quantum Authentication for...

Geoff Twardokus (Rochester Institute of Technology), Nina Bindel (SandboxAQ), Hanif Rahbari (Rochester Institute of Technology), Sarah McCarthy (University of Waterloo)

Read More

On Precisely Detecting Censorship Circumvention in Real-World Networks

Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

Read More

From Hardware Fingerprint to Access Token: Enhancing the Authentication...

Yue Xiao (Wuhan University), Yi He (Tsinghua University), Xiaoli Zhang (Zhejiang University of Technology), Qian Wang (Wuhan University), Renjie Xie (Tsinghua University), Kun Sun (George Mason University), Ke Xu (Tsinghua University), Qi Li (Tsinghua University)

Read More

Faults in Our Bus: Novel Bus Fault Attack to...

Nimish Mishra (Department of Computer Science and Engineering, IIT Kharagpur), Anirban Chakraborty (Department of Computer Science and Engineering, IIT Kharagpur), Debdeep Mukhopadhyay (Department of Computer Science and Engineering, IIT Kharagpur)

Read More