Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Cross-app content sharing is one of the prominent features widely used in mobile apps. For example, a short video from one app can be shared to another (e.g., a messaging app) and further viewed by other users. In many cases, such Cross-app content sharing activities could have privacy implications for both the sharer and sharee, such as exposing app users' personal interests.

In this paper, we provide the first in-depth study on the privacy implications of Cross-app content sharing (as we call Cracs) activities in the mobile ecosystem. Our research showed that during the sharing process, the adversary can not only track and infer user interests as traditional web trackers but also cause other severe privacy implications to app users. More specifically, due to multiple privacy-intrusive designs and implementations of Cracs, an adversary can easily reveal a user's social relations to an outside party, or unnecessarily expose user identities and her associated personal data (e.g., user accounts in another app). Such privacy implications are indeed a concern for app users, as confirmed by a user study we have performed with 300 participants.

To further evaluate the impact of our identified privacy implications at large, we have designed an automatic pipeline named Shark, combined with static analysis and dynamic analysis to effectively identify whether a given app introduces unnecessary data exposure in Cracs. We analyzed 300 top downloaded apps collected from app stores in both the US and China. The analysis results showed that over 55% of the apps from China and 10% from the US are indeed problematic.

View More Papers

GNNIC: Finding Long-Lost Sibling Functions with Abstract Similarity

Qiushi Wu (University of Minnesota), Zhongshu Gu (IBM Research), Hani Jamjoom (IBM Research), Kangjie Lu (University of Minnesota)

Read More

SSL-WM: A Black-Box Watermarking Approach for Encoders Pre-trained by...

Peizhuo Lv (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Pan Li (Institute of Information Engineering, Chinese Academy of Sciences, China; School of Cyber Security, University of Chinese Academy of Sciences, China), Shenchen Zhu (Institute of Information Engineering, Chinese Academy of Sciences, China;…

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

Programmer's Perception of Sensitive Information in Code

Xinyao Ma, Ambarish Aniruddha Gurjar, Anesu Christopher Chaora, Tatiana R Ringenberg, L. Jean Camp (Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington)

Read More