Rui Xiao (Zhejiang University), Xiankai Chen (Zhejiang University), Yinghui He (Nanyang Technological University), Jun Han (KAIST), Jinsong Han (Zhejiang University)

In recent years, the proliferation of WiFi-connected devices and related research has led to novel techniques of utilizing WiFi as sensors, i.e., capturing human movements through channel state information (CSI) perturbations. While this enables passive occupant sensing, it also introduces privacy risks from textit{leaked WiFi signals} that attackers can intercept, leading to threats like textit{occupancy detection}, critical in scenarios such as burglaries or stalking. We propose LeakyBeam, a novel and improved textit{occupancy detection attack} that leverages a new side channel from WiFi CSI, namely beamforming feedback information (BFI). BFI retains victim's movement information, even when transmitted through walls, and is easily captured since BFI packets are unencrypted, making them a rich source of privacy-sensitive information. Furthermore, we also introduce a defense mechanism that obfuscates BFI packets, requiring minimal hardware changes. We demonstrate LeakyBeam's effectiveness through a comprehensive real-world evaluation at a distance of 20 meters, achieving true positive and negative rates of 82.7% and 96.7%, respectively.

View More Papers

The Road to Trust: Building Enclaves within Confidential VMs

Wenhao Wang (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Linke Song (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Benshan Mei (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering, CAS), Shuang Liu (Ant Group), Shijun Zhao (Key Laboratory of Cyberspace Security Defense, Institute of Information Engineering,…

Read More

DShield: Defending against Backdoor Attacks on Graph Neural Networks...

Hao Yu (National University of Defense Technology), Chuan Ma (Chongqing University), Xinhang Wan (National University of Defense Technology), Jun Wang (National University of Defense Technology), Tao Xiang (Chongqing University), Meng Shen (Beijing Institute of Technology, Beijing, China), Xinwang Liu (National University of Defense Technology)

Read More

Sheep's Clothing, Wolf's Data: Detecting Server-Induced Client Vulnerabilities in...

Fangming Gu (Institute of Information Engineering, Chinese Academy of Sciences), Qingli Guo (Institute of Information Engineering, Chinese Academy of Sciences), Jie Lu (Institute of Computing Technology, Chinese Academy of Sciences), Qinghe Xie (Institute of Information Engineering, Chinese Academy of Sciences), Beibei Zhao (Institute of Information Engineering, Chinese Academy of Sciences), Kangjie Lu (University of Minnesota),…

Read More

The Kids Are All Right: Investigating the Susceptibility of...

Elijah Bouma-Sims (Carnegie Mellon University), Lily Klucinec (Carnegie Mellon University), Mandy Lanyon (Carnegie Mellon University), Julie Downs (Carnegie Mellon University), Lorrie Faith Cranor (Carnegie Mellon University)

Read More