Fengchen Yang (Zhejiang University), Wenze Cui (Zhejiang University), Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Fluorescent lamps are almost everywhere for electric lighting in daily life, across private and public scenarios. Our study uncovers a new electromagnetic interference (EMI) attack surface that these light sources are actually able to manipulate nearby IoT devices in a contactless way. Different from previous EMI attempts requiring a specialized metal antenna as the emission source, which can easily alert victims, we introduce LightAntenna that leverages unaltered everyday fluorescent lamps to launch concealed EMI attacks. To understand why and how fluorescent lamps can be exploited as malicious antennas, we systematically characterize the rationale of EMI emission from fluorescent lamps and identify their capabilities and limits in terms of intensity and frequency response. Moreover, we carefully design a covert method of injecting high-frequency signals into the fluorescent tube via power line transmission. In this way, LightAntenna can realize controllable EMI attacks even across rooms and at a distance of up to 20 m. Our extensive experiments demonstrate the generality, practicality, tunability, and remote attack capability of LightAntenna, which successfully interferes with various types of sensors and IoT devices. In summary, our study provides a comprehensive analysis of the LightAntenna mechanism and proposes defensive strategies to mitigate this emerging attack surface.

View More Papers

HADES Attack: Understanding and Evaluating Manipulation Risks of Email...

Ruixuan Li (Tsinghua University), Chaoyi Lu (Tsinghua University), Baojun Liu (Tsinghua University;Zhongguancun Laboratory), Yunyi Zhang (Tsinghua University), Geng Hong (Fudan University), Haixin Duan (Tsinghua University;Zhongguancun Laboratory), Yanzhong Lin (Coremail Technology Co. Ltd), Qingfeng Pan (Coremail Technology Co. Ltd), Min Yang (Fudan University), Jun Shao (Zhejiang Gongshang University)

Read More

Probe-Me-Not: Protecting Pre-trained Encoders from Malicious Probing

Ruyi Ding (Northeastern University), Tong Zhou (Northeastern University), Lili Su (Northeastern University), Aidong Adam Ding (Northeastern University), Xiaolin Xu (Northeastern University), Yunsi Fei (Northeastern University)

Read More

Towards Better CFG Layouts

Jack Royer (CentraleSupélec), Frédéric TRONEL (CentraleSupélec, Inria, CNRS, University of Rennes), Yaëlle Vinçont (Univ Rennes, Inria, CNRS, IRISA)

Read More

Revisiting EM-based Estimation for Locally Differentially Private Protocols

Yutong Ye (Institute of software, Chinese Academy of Sciences & Zhongguancun Laboratory, Beijing, PR.China.), Tianhao Wang (University of Virginia), Min Zhang (Institute of Software, Chinese Academy of Sciences), Dengguo Feng (Institute of Software, Chinese Academy of Sciences)

Read More