Vasudev Gohil (Texas A&M University), Matthew DeLorenzo (Texas A&M University), Veera Vishwa Achuta Sai Venkat Nallam (Texas A&M University), Joey See (Texas A&M University), Jeyavijayan Rajendran (Texas A&M University)

The rapid advancement of large language models (LLMs) has enabled the ability to effectively analyze and generate code nearly instantaneously, resulting in their widespread adoption in software development. Following this advancement, researchers and companies have also begun integrating LLMs across the hardware design and verification process. However, these highly potent LLMs can also induce new attack scenarios upon security vulnerabilities across the hardware development process. One such attack vector that has not been explored so far is intellectual property (IP) piracy. Given that this attack can manifest as rewriting hardware designs to evade piracy detection, it is essential to thoroughly evaluate LLM capabilities in performing this task and assess the mitigation abilities of current IP piracy detection tools.

Therefore, in this work, we propose *LLMPirate*, the first LLM-based technique able to generate pirated variations of circuit designs that successfully evade detection across multiple state-of-the-art piracy detection tools. We devise three solutions to overcome challenges related to integration of LLMs for hardware circuit designs, scalability to large circuits, and effectiveness, resulting in an end-to-end automated, efficient, and practical formulation. We perform an extensive experimental evaluation of *LLMPirate* using eight LLMs of varying sizes and capabilities and assess their performance in pirating various circuit designs against four state-of-the-art, widely-used piracy detection tools. Our experiments demonstrate that *LLMPirate* is able to consistently evade detection on 100% of tested circuits across every detection tool. Additionally, we showcase the ramifications of *LLMPirate* using case studies on IBEX and MOR1KX processors and a GPS module, that we successfully pirate. We envision that our work motivates and fosters the development of better IP piracy detection tools.

View More Papers

VeriBin: Adaptive Verification of Patches at the Binary Level

Hongwei Wu (Purdue University), Jianliang Wu (Simon Fraser University), Ruoyu Wu (Purdue University), Ayushi Sharma (Purdue University), Aravind Machiry (Purdue University), Antonio Bianchi (Purdue University)

Read More

Iris: Dynamic Privacy Preserving Search in Authenticated Chord Peer-to-Peer...

Angeliki Aktypi (University of Oxford), Kasper Rasmussen (University of Oxford)

Read More

BumbleBee: Secure Two-party Inference Framework for Large Transformers

Wen-jie Lu (Ant Group), Zhicong Huang (Ant Group), Zhen Gu (Alibaba Group), Jingyu Li (Ant Group & Zhejiang University), Jian Liu (Zhejiang University), Cheng Hong (Ant Group), Kui Ren (Zhejiang University), Tao Wei (Ant Group), WenGuang Chen (Ant Group)

Read More

Revisiting Concept Drift in Windows Malware Detection: Adaptation to...

Adrian Shuai Li (Purdue University), Arun Iyengar (Intelligent Data Management and Analytics, LLC), Ashish Kundu (Cisco Research), Elisa Bertino (Purdue University)

Read More