Virat Shejwalkar (UMass Amherst), Amir Houmansadr (UMass Amherst)

Federated learning (FL) enables many data owners (e.g., mobile devices) to train a joint ML model (e.g., a next-word prediction classifier) without the need of sharing their private training data.

However, FL is known to be susceptible to poisoning attacks by malicious participants (e.g., adversary-owned mobile devices) who aim at hampering the accuracy of the jointly trained model through sending malicious inputs during the federated training process.

In this paper, we present a generic framework for model poisoning attacks on FL. We show that our framework leads to poisoning attacks that substantially outperform state-of-the-art model poisoning attacks by large margins. For instance, our attacks result in $1.5times$ to $60times$ higher reductions in the accuracy of FL models compared to previously discovered poisoning attacks.

Our work demonstrates that existing Byzantine-robust FL algorithms are significantly more susceptible to model poisoning than previously thought. Motivated by this, we design a defense against FL poisoning, called emph{divide-and-conquer} (DnC). We demonstrate that DnC outperforms all existing Byzantine-robust FL algorithms in defeating model poisoning attacks,
specifically, it is $2.5times$ to $12times$ more resilient in our experiments with different datasets and models.

View More Papers

PFirewall: Semantics-Aware Customizable Data Flow Control for Smart Home...

Haotian Chi (Temple University), Qiang Zeng (University of South Carolina), Xiaojiang Du (Temple University), Lannan Luo (University of South Carolina)

Read More

ALchemist: Fusing Application and Audit Logs for Precise Attack...

Le Yu (Purdue University), Shiqing Ma (Rutgers University), Zhuo Zhang (Purdue University), Guanhong Tao (Purdue University), Xiangyu Zhang (Purdue University), Dongyan Xu (Purdue University), Vincent E. Urias (Sandia National Laboratories), Han Wei Lin (Sandia National Laboratories), Gabriela Ciocarlie (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International)

Read More

Exploring The Design Space of Sharing and Privacy Mechanisms...

Abdulmajeed Alqhatani, Heather R. Lipford (University of North Carolina at Charlotte)

Read More