Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Large language models (LLMs), such as chatbots, have made significant strides in various fields but remain vulnerable to jailbreak attacks, which aim to elicit inappropriate responses. Despite efforts to identify these weaknesses, current strategies are ineffective against mainstream LLM chatbots, mainly due to undisclosed defensive measures by service providers. Our paper introduces MASTERKEY, a framework exploring the dynamics of jailbreak attacks and countermeasures. We present a novel method based on time-based characteristics to dissect LLM chatbot defenses. This technique, inspired by time-based SQL injection, uncovers the workings of these defenses and demonstrates a proof-of-concept attack on several LLM chatbots.

Additionally, MASTERKEY features an innovative approach for automatically generating jailbreak prompts that target well-defended LLM chatbots. By fine-tuning an LLM with jailbreak prompts, we create attacks with a 21.58% success rate, significantly higher than the 7.33% achieved by existing methods. We have informed service providers of these findings, highlighting the urgent need for stronger defenses. This work not only reveals vulnerabilities in LLMs but also underscores the importance of robust defenses against such attacks.

View More Papers

COSPAS Search and Rescue Satellite Uplink: A MAC-Based Security...

Syed Khandker (New York University Abu Dhabi), Krzysztof Jurczok (Amateur Radio Operator), Christina Pöpper (New York University Abu Dhabi)

Read More

SOCs lead AI adoption: Transitioning Lessons to the C-Suite

Eric Dull, Drew Walsh, Scott Riede (Deloitte and Touche)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Facilitating Threat Modeling by Leveraging Large Language Models

Isra Elsharef, Zhen Zeng (University of Wisconsin-Milwaukee), Zhongshu Gu (IBM Research)

Read More