Hyunwoo Lee (Seoul National University), Zach Smith (University of Luxembourg), Junghwan Lim (Seoul National University), Gyeongjae Choi (Seoul National University), Selin Chun (Seoul National University), Taejoong Chung (Rochester Institute of Technology), Ted "Taekyoung" Kwon (Seoul National University)

Middleboxes (MBs) are widely deployed in order to enhance security and performance in networking.
However, as the communications over the TLS become increasingly common, the end-to-end channel model of the TLS undermines the efficacy of MBs.
Existing solutions, such as `split TLS' that intercepts TLS sessions, often introduce significant security risks by installing a custom root certificate or sharing a private key.
Many studies have confirmed the vulnerabilities of combining the TLS with MBs, which include certificate validation failures, unwanted content modification, and using obsolete ciphersuites.
To address the above issues, we introduce an MB-aware TLS protocol, dubbed maTLS, that allows MBs to participate in the TLS in a visible and accountable fashion.
Every participating MB now splits a session into two segments with its own security parameters in collaboration with the two endpoints.
However, the session is still secure as the maTLS protocol is designed to achieve the authentication of MBs, the audit of MBs' operations, and the verification of security parameters of segments.
We carry out testbed-based experiments to show that maTLS achieves the above security goals with marginal overhead.
We also prove the security model of maTLS by using Tamarin, a security verification tool.

View More Papers

Oligo-Snoop: A Non-Invasive Side Channel Attack Against DNA Synthesis...

Sina Faezi (University of California, Irvine), Sujit Rokka Chhetri (University of California, Irvine), Arnav Vaibhav Malawade (University of California, Irvine), John Charles Chaput (University of California, Irvine), William Grover (University of California, Riverside), Philip Brisk (University of California, Riverside), Mohammad Abdullah Al Faruque (University of California, Irvine)

Read More

Send Hardest Problems My Way: Probabilistic Path Prioritization for...

Lei Zhao (Wuhan University), Yue Duan (University of California, Riverside), Heng Yin (University of California, Riverside), Jifeng Xuan (Wuhan University)

Read More

REDQUEEN: Fuzzing with Input-to-State Correspondence

Cornelius Aschermann (Ruhr-Universität Bochum), Sergej Schumilo (Ruhr-Universität Bochum), Tim Blazytko (Ruhr-Universität Bochum), Robert Gawlik (Ruhr-Universität Bochum), Thorsten Holz (Ruhr-Universität Bochum)

Read More

Time Does Not Heal All Wounds: A Longitudinal Analysis...

Meng Luo (Stony Brook University), Pierre Laperdrix (Stony Brook University), Nima Honarmand (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More