Stephen Herwig (University of Maryland), Katura Harvey (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), George Hughey (University of Maryland), Richard Roberts (University of Maryland, Max Planck Institute for Software Systems (MPI-SWS)), Dave Levin (University of Maryland)

The Internet of Things (IoT) introduces an unprecedented diversity and ubiquity to networked computing. It also introduces new attack surfaces that are a boon to attackers. The recent Mirai botnet showed the potential and power of a collection of compromised IoT devices. A new botnet, known as Hajime, targets many of the same devices as Mirai, but differs considerably in its design and operation. Hajime uses a public peer-to-peer system as its command and control infrastructure, and regularly introduces new exploits, thereby increasing its resilience.

We show that Hajime’s distributed design makes it a valuable tool for better understanding IoT botnets. For instance, Hajime cleanly separates its bots into different peer groups depending on their underlying hardware architecture. Through detailed measurement—active scanning of Hajime’s peer-to-peer infrastructure and passive, longitudinal collection of root DNS backscatter traffic—we show that Hajime can be used as a lens into how IoT botnets operate, what kinds of devices they compromise, and what countries are more (or less) susceptible. Our results show that there are more compromised IoT devices than previously reported; that these devices use an assortment of CPU architectures, the popularity of which varies widely by country; that churn is high among IoT devices; and that new exploits can quickly and drastically increase the size and power of IoT botnets. Our code and data are available to assist future efforts to measure and mitigate the growing threat of IoT botnets.

View More Papers

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

Nearby Threats: Reversing, Analyzing, and Attacking Google’s ‘Nearby Connections’...

Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More