René Helmke (Fraunhofer FKIE), Elmar Padilla (Fraunhofer FKIE, Germany), Nils Aschenbruck (University of Osnabrück)

Firmware corpora for vulnerability research should be textit{scientifically sound}. Yet, several practical challenges complicate the creation of sound corpora: Sample acquisition, e.g., is hard and one must overcome the barrier of proprietary or encrypted data. As image contents are unknown prior analysis, it is hard to select textit{high-quality} samples that can satisfy scientific demands.
Ideally, we help each other out by sharing data. But here, sharing is problematic due to copyright laws. Instead, papers must carefully document each step of corpus creation: If a step is unclear, replicability is jeopardized. This has cascading effects on result verifiability, representativeness, and, thus, soundness.

Despite all challenges, how can we maintain the soundness of firmware corpora? This paper thoroughly analyzes the problem space and investigates its impact on research: We distill practical binary analysis challenges that significantly influence corpus creation. We use these insights to derive guidelines that help researchers to nurture corpus replicability and representativeness. We apply them to 44 top tier papers and systematically analyze scientific corpus creation practices. Our comprehensive analysis confirms that there is currently no common ground in related work. It shows the added value of our guidelines, as they discover methodical issues in corpus creation and unveil miniscule step stones in documentation. These blur visions on representativeness, hinder replicability, and, thus, negatively impact the soundness of otherwise excellent work.

Finally, we show the feasibility of our guidelines and build a new corpus for large-scale analyses on Linux firmware: LFwC. We share rich meta data for good (and proven) replicability. We verify unpacking, deduplicate, identify contents, provide ground truth, and demonstrate LFwC's utility for research.

View More Papers

Automated Expansion of Privacy Data Taxonomy for Compliant Data...

Yue Qin (Indiana University Bloomington & Central University of Finance and Economics), Yue Xiao (Indiana University Bloomington & IBM Research), Xiaojing Liao (Indiana University Bloomington)

Read More

Try to Poison My Deep Learning Data? Nowhere to...

Yansong Gao (The University of Western Australia), Huaibing Peng (Nanjing University of Science and Technology), Hua Ma (CSIRO's Data61), Zhi Zhang (The University of Western Australia), Shuo Wang (Shanghai Jiao Tong University), Rayne Holland (CSIRO's Data61), Anmin Fu (Nanjing University of Science and Technology), Minhui Xue (CSIRO's Data61), Derek Abbott (The University of Adelaide, Australia)

Read More

ScopeVerif: Analyzing the Security of Android’s Scoped Storage via...

Zeyu Lei (Purdue University), Güliz Seray Tuncay (Google), Beatrice Carissa Williem (Purdue University), Z. Berkay Celik (Purdue University), Antonio Bianchi (Purdue University)

Read More

No Source Code? No Problem! Twenty Years of Research...

Jack W. Davidson, Professor of Computer Science in the School of Engineering and Applied Science, University of Virginia

Read More