Weikeng Chen (UC Berkeley), Raluca Ada Popa (UC Berkeley)

File-sharing systems like Dropbox offer insufficient privacy because a compromised server can see the file contents in the clear. Although encryption can hide such contents from the servers, metadata leakage remains significant. The goal of our work is to develop a file-sharing system that hides metadata---including user identities and file access patterns.

Metal is the first file-sharing system that hides such metadata from malicious users and that has a latency of only a few seconds. The core of Metal consists of a new two-server multi-user oblivious RAM (ORAM) scheme, which is secure against malicious users, a metadata hiding access control protocol, and a capability sharing protocol.

Compared with the state-of-the-art malicious-user file-sharing scheme PIR-MCORAM (Maffei et al.'17), which does not hide user identities, Metal hides the user identities and is 500x faster (in terms of amortized latency) or 10^5x faster (in terms of worst-case latency).

View More Papers

On the Resilience of Biometric Authentication Systems against Random...

Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

Read More

HFL: Hybrid Fuzzing on the Linux Kernel

Kyungtae Kim (Purdue University), Dae R. Jeong (KAIST), Chung Hwan Kim (NEC Labs America), Yeongjin Jang (Oregon State University), Insik Shin (KAIST), Byoungyoung Lee (Seoul National University)

Read More

Complex Security Policy? A Longitudinal Analysis of Deployed Content...

Sebastian Roth (CISPA Helmholtz Center for Information Security), Timothy Barron (Stony Brook University), Stefano Calzavara (Università Ca' Foscari Venezia), Nick Nikiforakis (Stony Brook University), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

Designing a Better Browser for Tor with BLAST

Tao Wang (Hong Kong University of Science and Technology)

Read More