Shivam Bhasin (Nanyang Technological University), Anupam Chattopadhyay (Nanyang Technological University), Annelie Heuser (Univ Rennes, Inria, CNRS, IRISA), Dirmanto Jap (Nanyang Technological University), Stjepan Picek (Delft University of Technology), Ritu Ranjan Shrivastwa (Secure-IC)

Profiled side-channel attacks represent a practical threat to digital devices, thereby having the potential to disrupt the foundation of e-commerce, Internet-of-Things (IoT), and smart cities. In the profiled side-channel attack, adversary gains knowledge about the target device by getting access to a cloned device. Though these two devices are different in real-world scenarios, yet, unfortunately, a large part of research works simplifies the setting by using only a single device for both profiling and attacking. There, the portability issue is conveniently ignored to ease the experimental procedure. In parallel to the above developments, machine learning techniques are used in recent literature demonstrating excellent performance in profiled side-channel attacks. Again, unfortunately, the portability is neglected.

In this paper, we consider realistic side-channel scenarios and commonly used machine learning techniques to evaluate the influence of portability on the efficacy of an attack. Our experimental results show that portability plays an important role and should not be disregarded as it contributes to a significant overestimate of the attack efficiency, which can easily be an order of magnitude size. After establishing the importance of portability, we propose a new model called the Multiple Device Model (MDM) that formally incorporates the device to device variation during a profiled side-channel attack. We show through experimental studies, how machine learning and MDM significantly enhances the capacity for practical side-channel attacks.
More precisely, we demonstrate how MDM can improve the performance of an attack by an order of magnitude, completely negating the influence of portability.

View More Papers

CDN Judo: Breaking the CDN DoS Protection with Itself

Run Guo (Tsinghua University), Weizhong Li (Tsinghua University), Baojun Liu (Tsinghua University), Shuang Hao (University of Texas at Dallas), Jia Zhang (Tsinghua University), Haixin Duan (Tsinghua University), Kaiwen Sheng (Tsinghua University), Jianjun Chen (ICSI), Ying Liu (Tsinghua University)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More

Strong Authentication without Temper-Resistant Hardware and Application to Federated...

Zhenfeng Zhang (Chinese Academy of Sciences, University of Chinese Academy of Sciences, and The Joint Academy of Blockchain Innovation), Yuchen Wang (Chinese Academy of Sciences and University of Chinese Academy of Sciences), Kang Yang (State Key Laboratory of Cryptology)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More