Shaoke Xi (Zhejiang University), Tianyi Fu (Zhejiang University), Kai Bu (Zhejiang University), Chunling Yang (Zhejiang University), Zhihua Chang (Zhejiang University), Wenzhi Chen (Zhejiang University), Zhou Ma (Zhejiang University), Chongjie Chen (HANG ZHOU CITY BRAIN CO., LTD), Yongsheng Shen (HANG ZHOU CITY BRAIN CO., LTD), Kui Ren (Zhejiang University)

The rapid growth of cryptojacking and the increase in regulatory bans on cryptomining have prompted organizations to enhance detection ability within their networks. Traditional methods, including rule-based detection and deep packet inspection, fall short in timely and comprehensively identifying new and encrypted mining threats. In contrast, learning-based techniques show promise by identifying content-agnostic traffic patterns, adapting to a wide range of cryptomining configurations. However, existing learning-based systems often lack scalability in real-world detection, primarily due to challenges with unlabeled, imbalanced, and high-speed traffic inputs. To address these issues, we introduce MineShark, a system that identifies robust patterns of mining traffic to distinguish between vast quantities of benign traffic and automates the confirmation of model outcomes through active probing to prevent an overload of model alarms. As model inference labels are progressively confirmed, MineShark conducts self-improving updates to enhance model accuracy. MineShark is capable of line-rate detection at various traffic volume scales with the allocation of different amounts of CPU and GPU resources. In a 10 Gbps campus network deployment lasting ten months, MineShark detected cryptomining connections toward 105 mining pools ahead of concurrently deployed commercial systems, 17.6% of which were encrypted. It automatically filtered over 99.3% of false alarms and achieved an average packet processing throughput of 1.3 Mpps, meeting the line-rate demands of a 10 Gbps network, with a negligible loss rate of 0.2%. We publicize MineShark for broader use.

View More Papers

Secure Transformer Inference Made Non-interactive

Jiawen Zhang (Zhejiang University), Xinpeng Yang (Zhejiang University), Lipeng He (University of Waterloo), Kejia Chen (Zhejiang University), Wen-jie Lu (Zhejiang University), Yinghao Wang (Zhejiang University), Xiaoyang Hou (Zhejiang University), Jian Liu (Zhejiang University), Kui Ren (Zhejiang University), Xiaohu Yang (Zhejiang University)

Read More

Formally Verifying the Newest Versions of the GNSS-centric TESLA...

Ioana Boureanu, Stephan Wesemeyer (Surrey Centre for Cyber Security, University of Surrey)

Read More

Panel on “Security and Privacy Issues in New 5G...

Moderator: Arupjyoti (Arup) Bhuyan, Ph.D. Director, Wireless Security Institute, Idaho National Laboratory Panelists: Ted K. Woodward, Ph.D. Technical Director for FutureG, OUSD (R&E) Phillip Porras, Program Director, Internet Security Research, SRI Donald McBride, Senior Security Researcher, Bell Laboratories, Nokia

Read More

The Skeleton Keys: A Large Scale Analysis of Credential...

Yizhe Shi (Fudan University), Zhemin Yang (Fudan University), Kangwei Zhong (Fudan University), Guangliang Yang (Fudan University), Yifan Yang (Fudan University), Xiaohan Zhang (Fudan University), Min Yang (Fudan University)

Read More