Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Clustered federated learning (CFL) serves as a promising framework to address the challenges of non-IID (non-Independent and Identically Distributed) data and heterogeneity in federated learning. It involves grouping clients into clusters based on the similarity of their data distributions or model updates. However, classic CFL frameworks pose severe threats to clients' privacy since the honest-but-curious server can easily know the bias of clients' data distributions (its preferences). In this work, we propose a privacy-enhanced clustered federated learning framework, MingledPie, aiming to resist against servers' preference profiling capabilities by allowing clients to be grouped into multiple clusters spontaneously. Specifically, within a given cluster, we mingled two types of clients in which a major type of clients share similar data distributions while a small portion of them do not (false positive clients). Such that, the CFL server fails to link clients' data preferences based on their belonged cluster categories. To achieve this, we design an indistinguishable cluster identity generation approach to enable clients to form clusters with a certain proportion of false positive members without the assistance of a CFL server. Meanwhile, training with mingled false positive clients will inevitably degrade the performances of the cluster's global model. To rebuild an accurate cluster model, we represent the mingled cluster models as a system of linear equations consisting of the accurate models and solve it. Rigid theoretical analyses are conducted to evaluate the usability and security of the proposed designs. In addition, extensive evaluations of MingledPie on six open-sourced datasets show that it defends against preference profiling attacks with an accuracy of 69.4% on average. Besides, the model accuracy loss is limited to between 0.02% and 3.00%.

View More Papers

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More

Poster: Securing IoT Edge Devices: Applying NIST IR 8259A...

Rahul Choutapally, Konika Reddy Saddikuti, Solomon Berhe (University of the Pacific)

Read More

I know what you MEME! Understanding and Detecting Harmful...

Yong Zhuang (Wuhan University), Keyan Guo (University at Buffalo), Juan Wang (Wuhan University), Yiheng Jing (Wuhan University), Xiaoyang Xu (Wuhan University), Wenzhe Yi (Wuhan University), Mengda Yang (Wuhan University), Bo Zhao (Wuhan University), Hongxin Hu (University at Buffalo)

Read More

cozy: Comparative Symbolic Execution for Binary Programs

Caleb Helbling, Graham Leach-Krouse, Sam Lasser, Greg Sullivan (Draper)

Read More