Cheng Zhang (Hunan University), Yang Xu (Hunan University), Jianghao Tan (Hunan University), Jiajie An (Hunan University), Wenqiang Jin (Hunan University)

Clustered federated learning (CFL) serves as a promising framework to address the challenges of non-IID (non-Independent and Identically Distributed) data and heterogeneity in federated learning. It involves grouping clients into clusters based on the similarity of their data distributions or model updates. However, classic CFL frameworks pose severe threats to clients' privacy since the honest-but-curious server can easily know the bias of clients' data distributions (its preferences). In this work, we propose a privacy-enhanced clustered federated learning framework, MingledPie, aiming to resist against servers' preference profiling capabilities by allowing clients to be grouped into multiple clusters spontaneously. Specifically, within a given cluster, we mingled two types of clients in which a major type of clients share similar data distributions while a small portion of them do not (false positive clients). Such that, the CFL server fails to link clients' data preferences based on their belonged cluster categories. To achieve this, we design an indistinguishable cluster identity generation approach to enable clients to form clusters with a certain proportion of false positive members without the assistance of a CFL server. Meanwhile, training with mingled false positive clients will inevitably degrade the performances of the cluster's global model. To rebuild an accurate cluster model, we represent the mingled cluster models as a system of linear equations consisting of the accurate models and solve it. Rigid theoretical analyses are conducted to evaluate the usability and security of the proposed designs. In addition, extensive evaluations of MingledPie on six open-sourced datasets show that it defends against preference profiling attacks with an accuracy of 69.4% on average. Besides, the model accuracy loss is limited to between 0.02% and 3.00%.

View More Papers

TWINFUZZ: Differential Testing of Video Hardware Acceleration Stacks

Matteo Leonelli (CISPA Helmholtz Center for Information Security), Addison Crump (CISPA Helmholtz Center for Information Security), Meng Wang (CISPA Helmholtz Center for Information Security), Florian Bauckholt (CISPA Helmholtz Center for Information Security), Keno Hassler (CISPA Helmholtz Center for Information Security), Ali Abbasi (CISPA Helmholtz Center for Information Security), Thorsten Holz (CISPA Helmholtz Center for Information…

Read More

Unleashing the Power of Generative Model in Recovering Variable...

Xiangzhe Xu (Purdue University), Zhuo Zhang (Purdue University), Zian Su (Purdue University), Ziyang Huang (Purdue University), Shiwei Feng (Purdue University), Yapeng Ye (Purdue University), Nan Jiang (Purdue University), Danning Xie (Purdue University), Siyuan Cheng (Purdue University), Lin Tan (Purdue University), Xiangyu Zhang (Purdue University)

Read More

Truman: Constructing Device Behavior Models from OS Drivers to...

Zheyu Ma (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; EPFL; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Qiang Liu (EPFL), Zheming Li (Institute for Network Sciences and Cyberspace (INSC), Tsinghua University; JCSS, Tsinghua University (INSC) - Science City (Guangzhou) Digital Technology Group Co., Ltd.), Tingting Yin (Zhongguancun…

Read More

LAMP: Lightweight Approaches for Latency Minimization in Mixnets with...

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (University of Michigan), Claudia Diaz (KU Leuven)

Read More