Zhibo Zhang (Fudan University), Lei Zhang (Fudan University), Zhangyue Zhang (Fudan University), Geng Hong (Fudan University), Yuan Zhang (Fudan University), Min Yang (Fudan University)

underline{D}edicated underline{U}RL underline{s}hortening underline{s}ervices (DUSSs) are designed to transform textit{trusted} long URLs into the shortened links.
Since DUSSs are widely used in famous corporations to better serve their large number of users (especially mobile users), cyber criminals attempt to exploit DUSS to transform their malicious links and abuse the inherited implicit trust, which is defined as textit{Misdirection Attack} in this paper.
However, little effort has been made to systematically understand such attacks. To fulfill the research gap, we present the first systematic study of the textit{Misdirection Attack} in abusing DUSS to demystify its attack surface, exploitable scope, and security impacts in the real world.

Our study reveals that real-world DUSSs commonly rely on custom URL checks, yet they exhibit unreliable security assumptions regarding web domains and lack adherence to security standards.
We design and implement a novel tool, Ditto, for empirically studying vulnerable DUSSs from a mobile perspective.
Our large-scale study reveals that a quarter of the DUSSs are susceptible to textit{Misdirection Attack}.
More importantly, we find that DUSSs hold implicit trust from both their users and domain-based checkers, extending the consequences of the attack to stealthy phishing and code injection on users' mobile phones.
We have responsibly reported all of our findings to corporations of the affected DUSS and helped them fix their vulnerabilities.

View More Papers

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

User Comprehension and Comfort with Eye-Tracking and Hand-Tracking Permissions...

Kaiming Cheng (University of Washington), Mattea Sim (Indiana University), Tadayoshi Kohno (University of Washington), Franziska Roesner (University of Washington)

Read More

SecuWear: Secure Data Sharing Between Wearable Devices

Sujin Han (KAIST) Diana A. Vasile (Nokia Bell Labs), Fahim Kawsar (Nokia Bell Labs, University of Glasgow), Chulhong Min (Nokia Bell Labs)

Read More

CENSOR: Defense Against Gradient Inversion via Orthogonal Subspace Bayesian...

Kaiyuan Zhang (Purdue University), Siyuan Cheng (Purdue University), Guangyu Shen (Purdue University), Bruno Ribeiro (Purdue University), Shengwei An (Purdue University), Pin-Yu Chen (IBM Research AI), Xiangyu Zhang (Purdue University), Ninghui Li (Purdue University)

Read More