Dongwei Xiao (The Hong Kong University of Science and Technology), Zhibo Liu (The Hong Kong University of Science and Technology), Yiteng Peng (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Zero-knowledge (ZK) proofs have been increasingly popular in privacy-preserving applications and blockchain systems. To facilitate handy and efficient ZK proof generation for normal users, the industry has designed domain-specific languages (DSLs) and ZK compilers. Given a program in ZK DSL, a ZK compiler compiles it into a circuit, which is then passed to the prover and verifier for ZK checking. However, the correctness of ZK compilers is not well studied, and recent works have shown that de facto ZK compilers are buggy, which can allow malicious users to generate invalid proofs that are accepted by the verifier, causing security breaches and financial losses in cryptocurrency.

In this paper, we propose MTZK, a metamorphic testing framework to test ZK compilers and uncover incorrect compilations. Our approach leverages deliberately designed metamorphic relations (MRs) to mutate ZK compiler inputs. This way, ZK compilers can be automatically tested for compilation correctness using inputs and mutated variants. We propose a set of design considerations and optimizations to deliver an efficient and effective testing framework. In the evaluation of four industrial ZK compilers, we successfully uncovered 21 bugs, out of which the developers have promptly patched 15. We also show possible exploitations of the uncovered bugs to demonstrate their severe security implications.

View More Papers

Off-Path TCP Hijacking in Wi-Fi Networks: A Packet-Size Side...

Ziqiang Wang (Southeast University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Yuxiang Yang (Tsinghua University), Mengyuan Li (University of Toronto), Ganqiu Du (China Software Testing Center), Ke Xu (Tsinghua University), Jianping Wu (Tsinghua University)

Read More

Black-box Membership Inference Attacks against Fine-tuned Diffusion Models

Yan Pang (University of Virginia), Tianhao Wang (University of Virginia)

Read More

Can Public IP Blocklists Explain Internet Radiation?

Simone Cossaro (University of Trieste), Damiano Ravalico (University of Trieste), Rodolfo Vieira Valentim (University of Turin), Martino Trevisan (University of Trieste), Idilio Drago (University of Turin)

Read More

Distributed Function Secret Sharing and Applications

Pengzhi Xing (University of Electronic Science and Technology of China), Hongwei Li (University of Electronic Science and Technology of China), Meng Hao (Singapore Management University), Hanxiao Chen (University of Electronic Science and Technology of China), Jia Hu (University of Electronic Science and Technology of China), Dongxiao Liu (University of Electronic Science and Technology of China)

Read More