Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Google’s Nearby Connections API enables any Android (and Android Things) application to provide proximity-based services to its users, regardless of their network connectivity. The API uses Bluetooth BR/EDR, Bluetooth LE and Wi-Fi to let “nearby” clients (discoverers) and servers (advertisers) connect and exchange different types of payloads. The implementation of the API is proprietary, closed-source and obfuscated. The updates of the API are automatically installed by Google across different versions of Android, without user interaction. Little is known publicly about the security guarantees offered by the API, even though it presents a significant attack surface.

In this work we present the first security analysis of the Google’s Nearby Connections API, based on reverse-engineering of its Android implementation. We discover and implement several attacks grouped into two families: connection manipulation (CMA) and range extension attacks (REA). CMA-attacks allow an attacker to insert himself as a man-in-the-middle and manipulate connections (even unrelated to the API), and to tamper with the victim’s network interface and configuration. REA-attacks allow an attacker to tunnel any nearby connection to remote (non-nearby) locations, even between two honest devices. Our attacks are enabled by REarby, a toolkit we developed while reversing the implementation of the API. REarby includes a dynamic binary instrumenter, a packet dissector, and the implementations of custom Nearby Connections client and server.

View More Papers

Distinguishing Attacks from Legitimate Authentication Traffic at Scale

Cormac Herley (Microsoft), Stuart Schechter (Unaffiliated)

Read More

Unveiling your keystrokes: A Cache-based Side-channel Attack on Graphics...

Daimeng Wang (University of California Riverside), Ajaya Neupane (University of California Riverside), Zhiyun Qian (University of California Riverside), Nael Abu-Ghazaleh (University of California Riverside), Srikanth V. Krishnamurthy (University of California Riverside), Edward J. M. Colbert (Virginia Tech), Paul Yu (U.S. Army Research Lab (ARL))

Read More

Don't Trust The Locals: Investigating the Prevalence of Persistent...

Marius Steffens (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

MBeacon: Privacy-Preserving Beacons for DNA Methylation Data

Inken Hagestedt (CISPA Helmholtz Center for Information Security), Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (Swiss Data Science Center, ETH Zurich/EPFL), Pascal Berrang (CISPA Helmholtz Center for Information Security), Haixu Tang (Indiana University Bloomington), XiaoFeng Wang (Indiana University Bloomington), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More