Daniele Antonioli (Singapore University of Technology and Design (SUTD)), Nils Ole Tippenhauer (CISPA), Kasper Rasmussen (University of Oxford)

Google’s Nearby Connections API enables any Android (and Android Things) application to provide proximity-based services to its users, regardless of their network connectivity. The API uses Bluetooth BR/EDR, Bluetooth LE and Wi-Fi to let “nearby” clients (discoverers) and servers (advertisers) connect and exchange different types of payloads. The implementation of the API is proprietary, closed-source and obfuscated. The updates of the API are automatically installed by Google across different versions of Android, without user interaction. Little is known publicly about the security guarantees offered by the API, even though it presents a significant attack surface.

In this work we present the first security analysis of the Google’s Nearby Connections API, based on reverse-engineering of its Android implementation. We discover and implement several attacks grouped into two families: connection manipulation (CMA) and range extension attacks (REA). CMA-attacks allow an attacker to insert himself as a man-in-the-middle and manipulate connections (even unrelated to the API), and to tamper with the victim’s network interface and configuration. REA-attacks allow an attacker to tunnel any nearby connection to remote (non-nearby) locations, even between two honest devices. Our attacks are enabled by REarby, a toolkit we developed while reversing the implementation of the API. REarby includes a dynamic binary instrumenter, a packet dissector, and the implementations of custom Nearby Connections client and server.

View More Papers

Don't Trust The Locals: Investigating the Prevalence of Persistent...

Marius Steffens (CISPA Helmholtz Center for Information Security), Christian Rossow (CISPA Helmholtz Center for Information Security), Martin Johns (TU Braunschweig), Ben Stock (CISPA Helmholtz Center for Information Security)

Read More

ExSpectre: Hiding Malware in Speculative Execution

Jack Wampler (University of Colorado Boulder), Ian Martiny (University of Colorado Boulder), Eric Wustrow (University of Colorado Boulder)

Read More

Automating Patching of Vulnerable Open-Source Software Versions in Application...

Ruian Duan (Georgia Institute of Technology), Ashish Bijlani (Georgia Institute of Technology), Yang Ji (Georgia Institute of Technology), Omar Alrawi (Georgia Institute of Technology), Yiyuan Xiong (Peking University), Moses Ike (Georgia Institute of Technology), Brendan Saltaformaggio (Georgia Institute of Technology), Wenke Lee (Georgia Institute of Technology)

Read More

Cracking the Wall of Confinement: Understanding and Analyzing Malicious...

Eihal Alowaisheq (Indiana University, King Saud University), Peng Wang (Indiana University), Sumayah Alrwais (King Saud University), Xiaojing Liao (Indiana University), XiaoFeng Wang (Indiana University), Tasneem Alowaisheq (Indiana University, King Saud University), Xianghang Mi (Indiana University), Siyuan Tang (Indiana University), Baojun Liu (Tsinghua University)

Read More