Fei Zuo (University of South Carolina), Xiaopeng Li (University of South Carolina), Patrick Young (Temple University), Lannan Luo (University of South Carolina), Qiang Zeng (University of South Carolina), Zhexin Zhang (University of South Carolina)

Binary code analysis allows analyzing binary code without having access to the corresponding source code. It is widely used for vulnerability discovery, malware dissection, attack investigation, etc. A binary, after disassembly, is expressed in an assembly language. This inspires us to approach binary analysis by leveraging ideas and techniques from Natural Language Processing (NLP), a rich area focused on processing text of various natural languages. We notice that binary code analysis and NLP share a lot of analogical topics, such as semantics extraction, summarization, and classification. This work utilizes these ideas to address two important code similarity comparison problems. (I) Given a pair of basic blocks for different
instruction set architectures, determining whether their semantics is similar or not; and (II) given a piece of code of interest, determining if it is contained in another piece of assembly code from a different architecture. The solutions to these two problems have many applications, such as cross-architecture code plagiarism detection, malware identification, and vulnerability discovery.

Despite the evident importance of Problem I, existing solutions are either inefficient or imprecise. Inspired by Neural Machine Translation (NMT), which is a new approach that tackles text across natural languages very well, we regard instructions as words and basic blocks as sentences, and propose a novel cross-(assembly)-lingual deep learning approach to solving the first problem, attaining high efficiency and precision. Regarding Problem II, many solutions have been proposed recently to solve this issue at the function level. However, performing cross-architecture code similarity comparison beyond function pairs is a new and more challenging endeavor. Employing our technique for cross-architecture basic-block comparison, we propose an effective solution to Problem II. We implement a prototype system and perform a comprehensive evaluation. A comparison between our approach and existing approaches to Problem I shows that our system outperforms them in terms of accuracy, efficiency and scalability. And the case studies utilizing the system demonstrate that our solution to Problem II is effective. Moreover, this research showcases how to apply ideas and techniques from NLP to large-scale binary code analysis.

View More Papers

Adversarial Attacks Against Automatic Speech Recognition Systems via Psychoacoustic...

Lea Schönherr (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Steffen Zeiler (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Dorothea Kolossa (Ruhr University Bochum)

Read More

Life after Speech Recognition: Fuzzing Semantic Misinterpretation for Voice...

Yangyong Zhang (Texas A&M University), Lei Xu (Texas A&M University), Abner Mendoza (Texas A&M University), Guangliang Yang (Texas A&M University), Phakpoom Chinprutthiwong (Texas A&M University), Guofei Gu (Texas A&M University)

Read More

TEE-aided Write Protection Against Privileged Data Tampering

Lianying Zhao (Concordia University), Mohammad Mannan (Concordia University)

Read More

NoDoze: Combatting Threat Alert Fatigue with Automated Provenance Triage

Wajih Ul Hassan (NEC Laboratories America, Inc.; University of Illinois at Urbana–Champaign), Shengjian Guo (Virginia Tech), Ding Li (NEC Laboratories America, Inc.), Zhengzhang Chen (NEC Laboratories America, Inc.), Kangkook Jee (NEC Laboratories America, Inc.), Zhichun Li (NEC Laboratories America, Inc.), Adam Bates (University of Illinois at Urbana–Champaign)

Read More