Shiqing Ma (Purdue University), Yingqi Liu (Purdue University), Guanhong Tao (Purdue University), Wen-Chuan Lee (Purdue University), Xiangyu Zhang (Purdue University)

Deep Neural Networks (DNN) are vulnerable to adversarial samples that
are generated by perturbing correctly classified inputs to cause DNN
models to misbehave (e.g., misclassification). This can potentially
lead to disastrous consequences especially in security-sensitive
applications. Existing defense and detection techniques work well for
specific attacks under various assumptions (e.g., the set of possible
attacks are known beforehand). However, they are not sufficiently
general to protect against a broader range of attacks. In this paper,
we analyze the internals of DNN models under various attacks and
identify two common exploitation channels: the provenance channel and
the activation value distribution channel. We then propose a novel
technique to extract DNN invariants and use them to perform runtime
adversarial sample detection. Our experimental results of 11 different
kinds of attacks on popular datasets including ImageNet and 13 models
show that our technique can effectively detect all these attacks
(over 90% accuracy) with limited false positives. We also compare it
with three state-of-the-art techniques including the Local Intrinsic
Dimensionality (LID) based method, denoiser based methods (i.e.,
MagNet and HGD), and the prediction inconsistency based approach
(i.e., feature squeezing). Our experiments show promising results.

View More Papers

DNS Cache-Based User Tracking

Amit Klein (Bar Ilan University), Benny Pinkas (Bar Ilan University)

Read More

Geo-locating Drivers: A Study of Sensitive Data Leakage in...

Qingchuan Zhao (The Ohio State University), Chaoshun Zuo (The Ohio State University), Giancarlo Pellegrino (CISPA, Saarland University; Stanford University), Zhiqiang Lin (The Ohio State University)

Read More

DIAT: Data Integrity Attestation for Resilient Collaboration of Autonomous...

Tigist Abera (Technische Universität Darmstadt), Raad Bahmani (Technische Universität Darmstadt), Ferdinand Brasser (Technische Universität Darmstadt), Ahmad Ibrahim (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technische Universität Darmstadt), Matthias Schunter (Intel Labs)

Read More

Balancing Image Privacy and Usability with Thumbnail-Preserving Encryption

Kimia Tajik (Oregon State University), Akshith Gunasekaran (Oregon State University), Rhea Dutta (Cornell University), Brandon Ellis (Oregon State University), Rakesh B. Bobba (Oregon State University), Mike Rosulek (Oregon State University), Charles V. Wright (Portland State University), Wu-Chi Feng (Portland State University)

Read More