Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

The Node.js ecosystem comprises millions of packages written in JavaScript. Many packages suffer from vulnerabilities such as arbitrary code execution (ACE) and arbitrary command injection (ACI). Prior work has developed automated tools based on dynamic taint tracking to detect potential vulnerabilities, and to synthesize proof-of-concept exploits that confirm them, with limited success.

One challenge these tools face is that expected inputs to package APIs often have varied types and object structure. Failure to call these APIs with inputs of the correct type and with specific fields leads to unsuccessful exploit generation and missed vulnerabilities. Generating inputs that can successfully deliver the desired exploit payload despite manipulation performed by the package is also difficult.

To address these challenges, we use a type and object-structure aware fuzzer to generate inputs to explore more execution paths during dynamic taint analysis. We leverage information generated by the taint analysis to infer the types and structure of the inputs, which are then used by the exploit synthesis engine to guide exploit generation.

We implement NodeMedic-FINE and evaluate it on 33,011 npm packages that contain calls to ACE and ACI sinks. Our tool finds 2257 potential flows and automatically synthesizes working exploits in 766 packages.

View More Papers

Mysticeti: Reaching the Latency Limits with Uncertified DAGs

Kushal Babel (Cornell Tech & IC3), Andrey Chursin (Mysten Labs), George Danezis (Mysten Labs & University College London (UCL)), Anastasios Kichidis (Mysten Labs), Lefteris Kokoris-Kogias (Mysten Labs & IST Austria), Arun Koshy (Mysten Labs), Alberto Sonnino (Mysten Labs & University College London (UCL)), Mingwei Tian (Mysten Labs)

Read More

Non-intrusive and Unconstrained Keystroke Inference in VR Platforms via...

Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Read More

Beyond Classification: Inferring Function Names in Stripped Binaries via...

Linxi Jiang (The Ohio State University), Xin Jin (The Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR

Zizhi Jin (Zhejiang University), Qinhong Jiang (Zhejiang University), Xuancun Lu (Zhejiang University), Chen Yan (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More