Tao Ni (City University of Hong Kong), Yuefeng Du (City University of Hong Kong), Qingchuan Zhao (City University of Hong Kong), Cong Wang (City University of Hong Kong)

Virtual Reality (VR) technologies are increasingly employed in numerous applications across various areas. Therefore, it is essential to ensure the security of interactions between users and VR devices. In this paper, we disclose a new side-channel leakage in the constellation tracking system of mainstream VR platforms, where the infrared (IR) signals emitted from the VR controllers for controller-headset interactions can be maliciously exploited to reconstruct unconstrained input keystrokes on the virtual keyboard non-intrusively. We propose a novel keystroke inference attack named VRecKey to demonstrate the feasibility and practicality of this novel infrared side channel. Specifically, VRecKey leverages a customized 2D IR sensor array to intercept ambient IR signals emitted from VR controllers and subsequently infers (i) character-level key presses on the virtual keyboard and (ii) word-level keystrokes along with their typing trajectories. We extensively evaluate the effectiveness of VRecKey with two commercial VR devices, and the results indicate that it can achieve over 94.2% and 90.5% top-3 accuracy in inferring character-level and word-level keystrokes with varying lengths, respectively. In addition, empirical results show that VRecKey is resilient to several practical impact factors and presents effectiveness in various real-world scenarios, which provides a complementary and orthogonal attack surface for the exploration of keystroke inference attacks in VR platforms.

View More Papers

Alba: The Dawn of Scalable Bridges for Blockchains

Giulia Scaffino (TU Wien), Lukas Aumayr (TU Wien), Mahsa Bastankhah (Princeton University), Zeta Avarikioti (TU Wien), Matteo Maffei (TU Wien)

Read More

Can Public IP Blocklists Explain Internet Radiation?

Simone Cossaro (University of Trieste), Damiano Ravalico (University of Trieste), Rodolfo Vieira Valentim (University of Turin), Martino Trevisan (University of Trieste), Idilio Drago (University of Turin)

Read More

NodeMedic-FINE: Automatic Detection and Exploit Synthesis for Node.js Vulnerabilities

Darion Cassel (Carnegie Mellon University), Nuno Sabino (IST & CMU), Min-Chien Hsu (Carnegie Mellon University), Ruben Martins (Carnegie Mellon University), Limin Jia (Carnegie Mellon University)

Read More

Cross-Origin Web Attacks via HTTP/2 Server Push and Signed...

Pinji Chen (Tsinghua University), Jianjun Chen (Tsinghua University & Zhongguancun Laboratory), Mingming Zhang (Zhongguancun Laboratory), Qi Wang (Tsinghua University), Yiming Zhang (Tsinghua University), Mingwei Xu (Tsinghua University), Haixin Duan (Tsinghua University)

Read More