Yanhao Wang (Institute of Software, Chinese Academy of Sciences), Xiangkun Jia (Pennsylvania State University), Yuwei Liu (Institute of Software, Chinese Academy of Sciences), Kyle Zeng (Arizona State University), Tiffany Bao (Arizona State University), Dinghao Wu (Pennsylvania State University), Purui Su (Institute of Software, Chinese Academy of Sciences)

Coverage-based fuzzing has been actively studied and widely adopted for finding vulnerabilities in real-world software applications. With code coverage, such as statement coverage and transition coverage, as the guidance of input mutation, coverage-based fuzzing can generate inputs that cover more code and thus find more vulnerabilities without prerequisite information such as input format. Current coverage-based fuzzing tools treat covered code equally. All inputs that contribute to new statements or transitions are kept for future mutation no matter what the statements or transitions are and how much they impact security. Although this design is reasonable from the perspective of software testing, which aims to full code coverage, it is inefficient for vulnerability discovery since that 1) current techniques are still inadequate to reach full coverage within a reasonable amount of time, and that 2) we always want to discover vulnerabilities early so that it can be patched promptly. Even worse, due to the non-discriminative code coverage treatment, current fuzzing tools suffer from recent anti-fuzzing techniques and become much less effective in finding real-world vulnerabilities.

To resolve the issue, we propose coverage accounting, an innovative approach that evaluates code coverage by security impacts. Based on the proposed metrics, we design a new scheme to prioritize fuzzing inputs and develop TortoiseFuzz, a greybox fuzzer for memory corruption vulnerabilities. We evaluated TortoiseFuzz on 30 real-world applications and compared it with 5 state-of-the-art greybox and hybrid fuzzers (AFL, AFLFast, FairFuzz, QSYM, and Angora). TortoiseFuzz outperformed all greybox fuzzers and most hybrid fuzzers. It also had comparative results for other hybrid fuzzers yet consumed much fewer resources. Additionally, TortoiseFuzz found 18 new real-world vulnerabilities and has got 8 new CVEs so far. We will open source TortoiseFuzz to foster future research.

View More Papers

Precisely Characterizing Security Impact in a Flood of Patches...

Qiushi Wu (University of Minnesota), Yang He (University of Minnesota), Stephen McCamant (University of Minnesota), Kangjie Lu (University of Minnesota)

Read More

Towards Plausible Graph Anonymization

Yang Zhang (CISPA Helmholtz Center for Information Security), Mathias Humbert (armasuisse Science and Technology), Bartlomiej Surma (CISPA Helmholtz Center for Information Security), Praveen Manoharan (CISPA Helmholtz Center for Information Security), Jilles Vreeken (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security)

Read More

Measuring the Deployment of Network Censorship Filters at Global...

Ram Sundara Raman (University of Michigan), Adrian Stoll (University of Michigan), Jakub Dalek (Citizen Lab, University of Toronto), Reethika Ramesh (University of Michigan), Will Scott (Independent), Roya Ensafi (University of Michigan)

Read More

MACAO: A Maliciously-Secure and Client-Efficient Active ORAM Framework

Thang Hoang (University of South Florida), Jorge Guajardo (Robert Bosch Research and Technology Center), Attila Yavuz (University of South Florida)

Read More