Nicola Ruaro (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Robert McLaughlin (University of California, Santa Barbara), Ilya Grishchenko (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara), Giovanni Vigna (University of California, Santa Barbara)

In recent years, the Ethereum blockchain has seen significant growth and adoption. One of the key factors of its success is the possibility to run immutable programs known as smart contracts. Smart contracts allow for the automatic manipulation of digital assets and play a central role in the new decentralized finance (DeFi) ecosystem. With the growth of DeFi, the interactions between smart contracts have become increasingly complex, enabling advanced financial protocols and applications. However, bugs in smart contract interactions are also a common cause of critical vulnerabilities that result in considerable financial losses.

In this paper, we study and detect a type of cross-contract vulnerability known as a storage collision. A smart contract uses storage to persistently store its data on the blockchain. Typically, each contract has its own separate storage. However, it is also possible that two smart contracts share their storage (using a delegate call). Unfortunately, when these two contracts have different understandings of the types/semantics of their shared storage, a storage collision vulnerability can occur. This may lead to unexpected behavior such as denial of service (frozen funds), privilege escalation, and theft of financial assets.

To detect and investigate the impact of storage collision vulnerabilities at scale, we propose CRUSH, a novel analysis system that discovers these flaws and synthesizes proof-of-concept exploits. We leverage CRUSH to perform a large-scale analysis of 14,237,696 smart contracts deployed on the Ethereum blockchain since its genesis. CRUSH identifies 14,891 potentially vulnerable contracts and automatically synthesizes an end-to-end exploit for 956 of them. Our system uncovers more than $6 million of novel, previously unreported potential financial damage caused by storage collision vulnerabilities.

View More Papers

Certificate Transparency Revisited: The Public Inspections on Third-party Monitors

Aozhuo Sun (Institute of Information Engineering, Chinese Academy of Sciences), Jingqiang Lin (School of Cyber Science and Technology, University of Science and Technology of China), Wei Wang (Institute of Information Engineering, Chinese Academy of Sciences), Zeyan Liu (The University of Kansas), Bingyu Li (School of Cyber Science and Technology, Beihang University), Shushang Wen (School of…

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

Secure Control of Connected and Automated Vehicles Using Trust-Aware...

H M Sabbir Ahmad, Ehsan Sabouni, Akua Dickson (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos Cassandras, Wenchao Li (Boston University)

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More