Ryan Wails (Georgetown University, U.S. Naval Research Laboratory), George Arnold Sullivan (University of California, San Diego), Micah Sherr (Georgetown University), Rob Jansen (U.S. Naval Research Laboratory)

The understanding of realistic censorship threats enables the development of more resilient censorship circumvention systems, which are vitally important for advancing human rights and fundamental freedoms. We argue that current state-of-the-art methods for detecting circumventing flows in Tor are unrealistic: they are overwhelmed with false positives (> 94%), even when considering conservatively high base rates (10-3). In this paper, we present a new methodology for detecting censorship circumvention in which a deep-learning flow-based classifier is combined with a host-based detection strategy that incorporates information from multiple flows over time. Using over 60,000,000 real-world network flows to over 600,000 destinations, we demonstrate how our detection methods become more precise as they temporally accumulate information, allowing us to detect circumvention servers with perfect recall and no false positives. Our evaluation considers a range of circumventing flow base rates spanning six orders of magnitude and real-world protocol distributions. Our findings suggest that future circumvention system designs need to more carefully consider host-based detection strategies, and we offer suggestions for designs that are more resistant to these attacks.

View More Papers

Resilient Routing for Low Earth Orbit Mega-Constellation Networks

Alexander Kedrowitsch (Virginia Tech), Jonathan Black (Virginia Tech) Daphne Yao (Virginia Tech)

Read More

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More

ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific...

Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More