Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

We assess the security of machine learning based biometric authentication systems against an attacker who submits uniform random inputs, either as feature vectors or raw inputs, in order to find an emph{accepting sample} of a target user. The average false positive rate (FPR) of the system, i.e., the rate at which an impostor is incorrectly accepted as the legitimate user, may be interpreted as a measure of the success probability of such an attack. However, we show that the success rate is often higher than the FPR. In particular, for one reconstructed biometric system with an average FPR of 0.03, the success rate was as high as 0.78. This has implications for the security of the system, as an attacker with only the knowledge of the length of the feature space can impersonate the user with less than 2 attempts on average. We provide detailed analysis of why the attack is successful, and validate our results using four different biometric modalities and four different machine learning classifiers. Finally, we propose mitigation techniques that render such attacks ineffective, with little to no effect on the accuracy of the system.

View More Papers

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

NoJITsu: Locking Down JavaScript Engines

Taemin Park (University of California, Irvine), Karel Dhondt (imec-DistriNet, KU Leuven), David Gens (University of California, Irvine), Yeoul Na (University of California, Irvine), Stijn Volckaert (imec-DistriNet, KU Leuven), Michael Franz (University of California, Irvine, USA)

Read More

When Malware is Packin' Heat; Limits of Machine Learning...

Hojjat Aghakhani (University of California, Santa Barbara), Fabio Gritti (University of California, Santa Barbara), Francesco Mecca (Università degli Studi di Torino), Martina Lindorfer (TU Wien), Stefano Ortolani (Lastline Inc.), Davide Balzarotti (Eurecom), Giovanni Vigna (University of California, Santa Barbara), Christopher Kruegel (University of California, Santa Barbara)

Read More

Packet-Level Signatures for Smart Home Devices

Rahmadi Trimananda (University of California, Irvine), Janus Varmarken (University of California, Irvine), Athina Markopoulou (University of California, Irvine), Brian Demsky (University of California, Irvine)

Read More