Benjamin Zi Hao Zhao (University of New South Wales and Data61 CSIRO), Hassan Jameel Asghar (Macquarie University and Data61 CSIRO), Mohamed Ali Kaafar (Macquarie University and Data61 CSIRO)

We assess the security of machine learning based biometric authentication systems against an attacker who submits uniform random inputs, either as feature vectors or raw inputs, in order to find an emph{accepting sample} of a target user. The average false positive rate (FPR) of the system, i.e., the rate at which an impostor is incorrectly accepted as the legitimate user, may be interpreted as a measure of the success probability of such an attack. However, we show that the success rate is often higher than the FPR. In particular, for one reconstructed biometric system with an average FPR of 0.03, the success rate was as high as 0.78. This has implications for the security of the system, as an attacker with only the knowledge of the length of the feature space can impersonate the user with less than 2 attempts on average. We provide detailed analysis of why the attack is successful, and validate our results using four different biometric modalities and four different machine learning classifiers. Finally, we propose mitigation techniques that render such attacks ineffective, with little to no effect on the accuracy of the system.

View More Papers

ConTExT: A Generic Approach for Mitigating Spectre

Michael Schwarz (Graz University of Technology), Moritz Lipp (Graz University of Technology), Claudio Canella (Graz University of Technology), Robert Schilling (Graz University of Technology and Know-Center GmbH), Florian Kargl (Graz University of Technology), Daniel Gruss (Graz University of Technology)

Read More

DISCO: Sidestepping RPKI's Deployment Barriers

Tomas Hlavacek (Fraunhofer SIT), Italo Cunha (Universidade Federal de Minas Gerais), Yossi Gilad (Hebrew University of Jerusalem), Amir Herzberg (University of Connecticut), Ethan Katz-Bassett (Columbia University), Michael Schapira (Hebrew University of Jerusalem), Haya Shulman (Fraunhofer SIT)

Read More

SODA: A Generic Online Detection Framework for Smart Contracts

Ting Chen (University of Electronic Science and Technology of China), Rong Cao (University of Electronic Science and Technology of China), Ting Li (University of Electronic Science and Technology of China), Xiapu Luo (The Hong Kong Polytechnic University), Guofei Gu (Texas A&M University), Yufei Zhang (University of Electronic Science and Technology of China), Zhou Liao (University…

Read More

The Attack of the Clones Against Proof-of-Authority

Parinya Ekparinya (University of Sydney), Vincent Gramoli (University of Sydney and CSIRO-Data61), Guillaume Jourjon (CSIRO-Data61)

Read More